Второй закон кирхгофа число уравнений

| | 0 Comment

§ 15. ВТОРОЙ ЗАКОН КИРХГОФА. ПРИМЕНЕНИЕ ЗАКОНОВ КИРХГОФА ДЛЯ
РАСЧЕТА ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ

При расчете электрических цепей часто приходится встречаться с цепями, которые образуют замкнутые контуры. В состав таких контуров, помимо сопротивлений, могут входить еще электродвижущие силы.

На рис. 35 представлена часть сложной электрической цепи в виде замкнутого контура АБВГ. На схеме указаны полярность электродвижущих сил Е1, Е2, Е3 и направления токов I1, I2, I3 и I4, протекающих на различных участках цепи.

Обходим контур от точки А в произвольном направлении, например по часовой стрелке. Рассмотрим каждый из участков рассматриваемого контура. На первом участке разность потенциалов между точками А и Б, или, что то же самое, напряжение UАБ, равна з. д. с. Е1 минус падение напряжения I1r1. Аналогично будет и на других участках цепи:

Складывая левые и правые части уравнения, получим:

Перенося произведения (Ir) в одну часть, а электродвижущие силы (Е) в другую часть, получим

Или в общем виде

Это выражение представляет собой второй закон Кирхгофа. Формула показывает, что во всяком замкнутом контуре алгебраическая сумма электродвижущих сил равна алгебраической сумме падений напряжений.

По второму закону Кирхгофа,

Для простейшей замкнутой цепи с одной э. д. с. Е (рис. 35)

Мы получили формулу закона Ома для замкнутой цепи.

Следовательно, закон Ома является частным случаем 2-го закона Кирхгофа.

При расчете электрических цепей применяют различные методы расчета. Выбор того или иного метода зависит от конфигурации цепи, числа э. д. с, заданных величин.

Как правило, расчет неразветвленных цепей с любым числом э. д. с, а также расчет сложных цепей с одной э. д. с. легче производить, применяя закон Ома.

Расчет сложных цепей с несколькими э. д. с. производят с помощью уравнений 1-го и 2-го законов Кирхгофа.

Расчет сложной цепи методом законов Кирхгофа производят в следующем порядке:

Условно задаются направлениями токов в различных участках цепи.

Определяют число уравнений, которое необходимо составить для решения задачи. Если известны все э. д. с. и сопротивления цепи, число уравнений должно быть равно числу неизвестных токов.

Для составления уравнений вначале используют уравнения 1-го закона Кирхгофа. Число уравнений 1-го закона Кирхгофа на единицу меньше числа узловых точек в схеме. Остальное число уравнений составляют по 2-му закону Кирхгофа.

Для этого намечают контуры, направление обхода этих контуров и приступают к составлению уравнений. Если направление обхода не совпадает с направлениями э. д. с. или с направлениями токов на отдельных участках контура, то величины э. д. с. и падения напряжения Ir входят в уравнения со знаком минус.

Решая систему уравнений, находят величину токов.

Если окажется, что в результате решения уравнений некоторые из токов получились отрицательными, то это значит, что направление этих токов было выбрано неправильно. Надо изменить направление токов на схеме.

Проверка правильности решения производится путем подстановки полученных значений токов в одно из составленных уравнений.

Решим несколько задач, используя закон Ома и оба закона Кирхгофа.

Пример 30. Найти токи в цепи, представленной на рис. 37. Выберем произвольно положительное направление тока. Обходя контур по часовой стрелке, пишем уравнение второго закона Кирхгофа:

Знак минус означает, что выбранное нами направление тока противоположно его действительному направлению.

Пример 31. Дана электрическая цепь (рис. 38). Определить токи на отдельных участках.

Произвольно выбираем положительные направления токов.

Для контура абде

Для контура авге

Для точки б, по первому закону Кирхгофа,

Имеем три уравнения с тремя неизвестными. Решая их, находим величину и направление токов. Подставляя значение тока /з из уравнения (3) в уравнение (1), получим

Складывая два последних уравнения, имеем:

подставляем значение I1 в уравнение (1):

Подставляем значение I1 в уравнение (2):

Знак минус показывает, что действительное направление тока /2 обратно принятому нами направлению.

servomotors.ru

Второй закон кирхгофа число уравнений

, где p+q=n.

Очевидно, что обе формулировки равноценны и выбор формы записи уравнений может быть произвольным. Существенным является только соглашение о знаках токов для данной цепи, т.е. в пределах описания одной электрической цепи нельзя для разных узлов использовать разные знаки для токов направленных к узлам или от узлов .

При составлении уравнений по первому закону Кирхгофа направления токов в ветвях электрической цепи выбирают обычно произвольно. При этом необязательно даже стремиться, чтобы во всех узлах цепи присутствовали токи разных направлений. Может получиться так, что в каком-либо узле все токи сходящихся в нем ветвей будут направлены к узлу или от узла, нарушая тем самым принцип непрерывности. В этом случае в процессе определения токов один или несколько из них окажутся отрицательными, что будет свидетельствовать о протекании их в направлении противоположном принятому.

Второй закон Кирхгофа связан с понятием потенциала электрического поля, как работы, совершаемой при перемещении единичного точечного заряда в пространстве. Если такое перемещение совершается по замкнутому контуру , то суммарная работа при возвращении в исходную точку будет равна нулю. В противном случае путем обхода контура можно было бы получать положительную энергию, нарушая закон ее сохранения.

Каждый узел или точка электрической цепи обладает собственным потенциалом и, перемещаясь вдоль замкнутого контура, мы совершаем работу, которая при возврате в исходную точку будет равна нулю. Это свойство потенциального электрического поля и описывает второй закон Кирхгофа в применении к электрической цепи.

Он также как и первый закон формулируется в двух вариантах, связанных с тем, что падение напряжения на источнике ЭДС численно равно электродвижущей силе, но имеет противоположный знак. Поэтому, если какая либо ветвь содержит сопротивление и источник ЭДС, направление которой согласно с направлением тока, то при обходе контура эти два слагаемых падения напряжения будут учитываться с разными знаками. Если же падение напряжения на источнике ЭДС учесть в другой части уравнения, то его знак будет соответствовать знаку напряжения на сопротивлении.

Сформулируем оба варианта второго закона Кирхгофа , т.к. они принципиально равноценны:

  • алгебраическая сумма падений напряжения вдоль любого замкнутого контура электрической цепи равна нулю
  • Примечание: знак + выбирается перед падением напряжения на резисторе, если направление протекания тока через него и направление обхода контура совпадают; для падений напряжения на источниках ЭДС знак + выбирается, если направление обхода контура и направление действия ЭДС встречны независимо от направления протекания тока;

    • алгебраическая сумма ЭДС вдоль любого замкнутого контура равна алгебраической сумме падений напряжения на резисторах в этом контуре

    , где p+q=n

    Примечание: знак + для ЭДС выбирается в том случае, если направление ее действия совпадает с направлением обхода контура, а для напряжений на резисторах знак + выбирается, если в них совпадают направление протекания тока и направление обхода.

    Здесь также как и в первом законе оба варианта корректны, но на практике удобнее использовать второй вариант, т.к. в нем проще определить знаки слагаемых.

    С помощью законов Кирхгофа для любой электрической цепи можно составить независимую систему уравнений и определить любые неизвестные параметры, если число их не превышает число уравнений. Для выполнения условий независимости эти уравнения должны составляться по определенным правилам.

    Общее число уравнений N в системе равно числу ветвей N в минус число ветвей, содержащих источники тока N J , т.е. N = N в — NJ .

    Наиболее простыми по выражениям являются уравнения по первому закону Кирхгофа, однако их число N 1 не может быть больше числа узлов Nу минус один.
    Недостающие уравнения составляются по второму закону Кирхгофа, т.е.

    Сформулируем алгоритм составления системы уравнений по законам Кирхгофа :

    1. определить число узлов и ветвей цепи Nу и N в ;
    2. определить число уравнений по первому и второму законам N 1 и N 2 . ;
    3. для всех ветвей (кроме ветвей с источниками тока) произвольно задать
      направления протекания токов;
    4. для всех узлов, кроме одного, выбранного произвольно, составить уравнения по первому закону Кирхгофа;
    5. произвольно выбрать на схеме электрической цепи замкнутые контуры таким образом, чтобы они отличались друг от друга по крайней мере одной ветвью и чтобы все ветви, кроме ветвей с источниками тока, входили по крайней мере в один контур;
    6. произвольно выбрать для каждого контура направление обхода и составить уравнения по второму закону Кирхгофа, включая в правую часть уравнения ЭДС действующие в контуре, а в левую падения напряжения на резисторах. Примечание: Знак ЭДС выбирают положительным, если направление ее действия совпадает с направлением обхода независимо от направления тока; а знак падения напряжения на резисторе принимают положительным, если направление тока в нем совпадает с направлением обхода.

    Рассмотрим этот алгоритм на примере рис 2.

    Здесь светлыми стрелками обозначены выбранные произвольно направления токов в ветвях цепи. Ток в ветви с R 4 не выбирается произвольно, т.к. в этой ветви он определяется действием источником тока.

    Число ветвей цепи равно 5, а т.к. одна из них содержит источник тока, то общее число уравнений Кирхгофа равно четырем.

    Число узлов цепи равно трем ( a, b и c ), поэтому число уравнений по первому закону Кирхгофа равно двум и их можно составлять для любой пары из этих трех узлов. Пусть это будут узлы a и b , тогда

    de.ifmo.ru

    § 2.8. Составление уравнений для расчета токов в схемах с помощью законов Кирхгофа

    § 2.8. Составление уравнений для расчета токов в схемах с помощью законов Кирхгофа. Законы Кирхгофа используют для нахождения токов в ветвях схемы. Обозначим число всех ветвей схемы в, число ветвей, содержащих источники тока, — вит и число узлов у. В каждой ветви схемы течет свой ток. Так как токи в ветвях с источниками тока известны, то число неизвестных токов равняется в — вит. Перед тем как составить уравнения, необходимо произвольно выбрать: а) положительные направления токов в ветвях и обозначить их на схеме; б) положительные направления обхода контуров для составления уравнений по второму закону Кирхгофа.

    С целью единообразия рекомендуется для всех контуров положительные направления обхода выбирать одинаковыми, например по часовой стрелке.

    Чтобы получить линейно независимые уравнения, по первому закону Кирхгофа составляют уравнения, число которых равно числу узлов без единицы, т. е. у — 1.

    Уравнение для последнего у-го узла не составляют, так как оно совпало бы с уравнением, полученным при суммировании уже составленных уравнений для у — 1 узлов, поскольку в эту сумму входили бы дважды и с противоположными знаками токи ветвей, не подходящих к у-му узлу, а токи ветвей, подходящих к у-му узлу, входили бы в эту сумму со знаками, противоположными тем, с какими они вошли бы в уравнение для у-го узла.

    По второму закону Кирхгофа составляют уравнения, число которых равно числу ветвей без источников тока (в — вит), за вычетом уравнений, составленных по первому закону Кирхгофа, т. е. (в — вит) — (у — 1) = в — вит — у + 1.

    Составляя уравнения по второму закону Кирхгофа, следует охватить все ветви схемы, исключая лишь ветви с источниками тока.

    Если попытаться составить уравнение по второму закону Кирхгофа в форме (2.4) для контура, в который входит источник тока, то в него вошли бы бесконечно большие слагаемые и оно не имело бы смысла.

    При записи линейно независимых уравнений по второму закону Кирхгофа стремятся, чтобы в каждый новый контур, для которого составляют уравнение, входила хотя бы одна новая ветвь, не вошедшая в предыдущие контуры, для которых уже записаны уравнения по второму закону Кирхгофа. Такие контуры условимся называть независимыми.

    Требование, чтобы в каждый новый контур входила хотя бы одна новая ветвь, является достаточным, но не необходимым условием, а потому его не всегда выполняют. В таких случаях часть уравнений по второму закону Кирхгофа составляют для контуров, все ветви которых уже вошли в предыдущие контуры.

    Клещи электроизмерительные

    Пример 10. Найти токи в ветвях схемы рис. 2.9, в которой Е1 = 80 В, Е2 = 64 В, R1 = 6 Ом, R2 = 4 Ом, R3 = 3 Ом, R4 = 1 Ом.

    Решение. Произвольно выбираем положительные направления тока в ветвях. В схеме рис. 2.9, в = 3; вит = 0; у = 2.

    Следовательно, по первому закону Кирхгофа, можно составить только одно уравнение:

    Нетрудно убедиться, что для второго узла получили бы аналогичное уравнение. По второму закону Кирхгофа составим в — вит — (у — 1) = 3 — 0 — (2 — 1) = 2 уравнения. Положительные направления обхода контуров выбираем по часовой стрелке.

    Знак плюс перед I1R1 взят потому, что направление тока совпадает с направлением обхода контура; знак минус перед I2R2 — потому, что направление I2 встречно обходу контура.

    Совместное решение уравнений (а) — (в)дает I1 = 14 А, I2 = — 15 А, I3 = — 1 А.

    Поскольку положительные направления токов выбирают произвольно, в результате расчета какой-либо один или несколько токов могут оказаться отрицательными. В рассмотренном примере отрицательными оказались токи I2 и I3, что следует понимать так: направления токов I2 и I3 не совпадают с направлениями, принятыми для них на рис. 2.9 за положительные, т. е. в действительности токи I2 и I3 проходят в обратном направлении.

    Для выбора контура таким образом, чтобы в каждый из них входило по одной ветви, не входящей в остальные контуры, используют понятие дерева. Поддеревом понимают совокупность ветвей, касающихся всех узлов, но не образующих ни одного замкнутого контура. Из одной и той же схемы можно образовать несколько деревьев. При составлении системы уравнений по второму закону Кирхгофа можно взять любое дерево из возможных.

    Одно из возможных деревьев схемы рис. 2.10, а изображено на рис. 2.10, б, а на рис. 2.10, в — четыре независимых контура, в каждый из которых входит по одной пунктиром показанной ветви, не входящей в остальные. Более подробно о топологии электрических схем см. § 2.31 — 2.35 и А.5 — А. 10.

    www.sonel.ru

    Законы Кирхгофа — формулы и примеры использования

    Законы Кирхгофа устанавливают соотношения между токами и напряжениями в разветвленных электрических цепях произвольного типа. Законы Кирхгофа имеют особое значение в электротехнике из-за своей универсальности, так как пригодны для решения любых электротехнических задач. Законы Кирхгофа справедливы для линейных и нелинейных цепей при постоянных и переменных напряжениях и токах.

    Первый закон Кирхгофа вытекает из закона сохранения заряда. Он состоит в том, что алгебраическая сумма токов, сходящихся в любом узле, равна нулю.

    где – число токов, сходящихся в данном узле. Например, для узла электрической цепи (рис. 1) уравнение по первому закону Кирхгофа можно записать в виде I1 — I2 + I3 — I4 + I5 = 0

    В этом уравнении токи, направленные к узлу, приняты положительными.

    Физически первый закон Кирхгофа – это закон непрерывности электрического тока.

    Второй закон Кирхгофа: алгебраическая сумма падений напряжений на отдельных участках замкнутого контура, произвольно выделенного в сложной разветвленной цепи, равна алгебраической сумме ЭДС в этом контуре

    где k – число источников ЭДС; m – число ветвей в замкнутом контуре; Ii , Ri – ток и сопротивление i -й ветви.

    Так, для замкнутого контура схемы (рис. 2 ) Е1 — Е2 + Е3 = I1R1 — I2R2 + I3R3 — I4R4

    Замечание о знаках полученного уравнения:

    1) ЭДС положительна, если ее направление совпадает с направлением произвольно выбранного обхода контура;

    2) падение напряжения на резисторе положительно, если направление тока в нем совпадает с направлением обхода.

    Физически второй закон Кирхгофа характеризует равновесие напряжений в любом контуре цепи.

    Расчет разветвленной электрической цепи с помощью законов Кирхгофа

    Метод законов Кирхгофа заключается в решении системы уравнений, составленных по первому и второму законам Кирхгофа.

    Метод заключается в составлении уравнений по первому и второму законам Кирхгофа для узлов и контуров электрической цепи и решении этих уравнений с целью определения неизвестных токов в ветвях и по ним – напряжений. Поэтому число неизвестных равно числу ветвей b , следовательно, столько же независимых уравнений необходимо составить по первому и второму законам Кирхгофа.

    Число уравнений, которые можно составить на основании первого закона, равно числу узлов цепи, причем только ( y – 1) уравнений являются независимыми друг от друга.

    Независимость уравнений обеспечивается выбором узлов. Узлы обычно выбирают так, чтобы каждый последующий узел отличался от смежных узлов хотя бы одной ветвью. Остальные уравнения составляются по второму закону Кирхгофа для независимых контуров, т.е. число уравнений b — (y — 1) = b — y +1 .

    Контур называется независимым, если он содержит хотя бы одну ветвь, не входящую в другие контуры.

    Составим систему уравнений Кирхгофа для электрической цепи (рис. 3 ). Схема содержит четыре узла и шесть ветвей.

    Поэтому по первому закону Кирхгофа составим y — 1 = 4 — 1 = 3 уравнения, а по второму b — y + 1 = 6 — 4 + 1 = 3 , также три уравнения.

    Произвольно выберем положительные направления токов во всех ветвях (рис. 4 ). Направление обхода контуров выбираем по часовой стрелке.

    Составляем необходимое число уравнений по первому и второму законам Кирхгофа

    Полученная система уравнений решается относительно токов. Если при расчете ток в ветви получился с минусом, то его направление противоположно принятому направлению.

    Потенциальная диаграмма – это графическое изображение второго закона Кирхгофа, которая применяется для проверки правильности расчетов в линейных резистивных цепях. Потенциальная диаграмма строится для контура без источников тока, причем потенциалы точек начала и конца диаграммы должны получиться одинаковыми.

    Рассмотрим контур abcda схемы, изображенной на рис. 4. В ветке ab между резистором R1 и ЭДС E1 обозначим дополнительную точку k.

    Рис. 4. Контур для построения потенциальной диаграммы

    Потенциал любого узла принимаем равным нулю (например, ?а= 0), выбираем обход контура и определяем потенциалы точек контура: ?а = 0, ?к = ?а — I1R1 , ? b = ? к + Е1, ?с = ? b — I2R2 , ? d = ?c — Е2, ? a = ?d + I3R3 = 0

    При построении потенциальной диаграммы необходимо учитывать, что сопротивление ЭДС равно нулю (рис. 5 ).

    Рис. 5. Потенциальная диаграмма

    Законы Кирхгофа в комплексной форме

    Для цепей синусоидального тока законы Кирхгофа формулируются так же, как и для цепей постоянного тока, но только для комплексных значений токов и напряжений.

    Первый закон Кирхгофа : «алгебраическая сумма комплексов тока в узле электрической цепи равна нулю»

    Второй закон Кирхгофа : «в любом замкнутом контуре электрической цепи алгебраическая сумма комплексных ЭДС равна алгебраической сумме комплексных напряжений на всех пассивных элементах этого контура».

    electricalschool.info

    Законы Кирхгофа

    Решение задач на расчет сложных цепей основывается на применении первого и второго законов Кирхгофа, которые наряду с законом Ома являются основными законами электрической цепи.

    Законы Кирхгофа определяют распределение токов и напряжений в электрических цепях любой конфигурации.

    Первый закон Кирхгофа

    Рассматривая разветвленные электрические цепи, состоящие из нескольких контуров, нам необходимо установить соотношения между токами, приходящими к любому узлу, и токами, уходящими от него. Из физической сущности электрического тока следует, что общее количество носителей тока, притекающее к узлу в течении некоторого промежутка времени, равно количеству носителей, утекающему от узла за тоже время. Если предположить, что это положение не выполняется, то в узловой точке должно происходить накопление зарядов или убыль — утечка зарядов.

    На практике эти явления не наблюдаются, следовательно, мы можем утверждать, что сумма величин токов, притекающих к точке разветвления, равна сумме величин токов, утекающих от нее.

    Это положение и является формулировкой первого закона Кирхгофа.

    Математическое выражение первого закона Кирхгофа применительно к узлу А:

    Условимся токи, притекающие к точке разветвления, считать положительными, а токи, утекающие от нее, — отрицательными и сформулируем окончательно первый закон Кирхгофа:

    Алгебраическая сумма величин токов в точке разветвления равна нулю.

    На рисунке изображена узловая точка и указаны направления и величины в пяти ветвях.

    Требуется определить величину и направление тока в шестой ветви.

    Предположим, что ток в шестой ветви притекает к точке А. Используя первый закон Кирхгофа, составим уравнение ∑I=0

    Второй закон Кирхгофа

    Применение законов Кирхгофа для расчета сложных цепей

    Используя первый закон Кирхгофа, можно составить (k-1) уравнений, связывающих между собой величины токов в ветвях. Таким образом, число уравнений на одно меньше, чем число всех узлов цепи. Это объясняется тем, что все токи, входящие в уравнение для узла k, уже вошли в предыдущие уравнения. На схеме в узле А сходятся токи I1, I2, I3; в узле В —I2, I3, I4, I5; в узле С — I4, I5, I1.

    Уравнения первого закона Кирхгофа для узлов А и В являются независимыми. В то же время уравнение для узла С. Дает нам зависимость, которая может быть получена на основании уравнений, составленных для первых двух узлов.
    В самом деле, на основании первого закона Кирхгофа получим:

    Но последнее уравнение не является независимым, так как может быть получено на основании двух первых.
    Действительно, складывая (1) и (2), получим

    а умножив обе части равенства на -1, будем иметь

    Определим теперь число уравнений, которое можно составить, используя второй закон Кирхгофа. Для того чтобы эти уравнения были независимы друг от друга, достаточно чтобы контуры, для которых они пишутся, отличались хотя бы одной ветвью, входящей в их состав.
    Математически доказано, что число независимых уравнений m, которое можно составить для любой сложной цепи по второму закону Кирхгофа будет равно

    m = n-k + 1 ,

    где m —число независимых уравнений, составленных по второму закону Кирхгофа;
    n — число ветвей;
    к — число узлов.
    При выборе контуров стараются по возможности подобрать такие, которые содержат меньшее число ветвей и э. д. с.
    Общее число уравнений, составляемых по первому и второму законам Кирхгофа для сложной цепи, состоящей из ветвей и узлов, будет равно числу ветвей.
    Складывая число уравнений, составленных на основании первого закона Кирхгофа (k—1), с числом уравнений, составленных на основании второго закона Кирхгофа (m), получим

    k — 1 + m = k— 1 + n — k + 1 = n .

    Итак, если задана цепь из n ветвей и известны все э. д. с. и сопротивления, всегда можно составить n уравнений по числу неизвестных токов в ветвях.
    Для решения задачи на расчет сложной цепи необходимо:

    4. Для выбранных узловых точек схемы составить (k — 1) уравнений по первому закону Кирхгофа:

    Суммирование токов производится обязательно с учетом знака.
    5. Для выбранных замкнутых контуров составить m уравнений по второму закону Кирхгофа:

    При составлении этих уравнений э. д. с. суммируются с учетом знака, а падения напряжения берутся со знаком плюс, если направление тока совпадает с направлением обхода контура, и наоборот.
    6. Решить систему полученных уравнений, в результате чего определяются величины токов во всех ветвях цепи. Если при решении та или иная величина тока получается со знаком минус, то это значит, что фактическое направление тока в данной ветви обратно тому, которое было принято предварительно.
    Для закрепления рассматриваемого порядка расчета сложной цепи с использованием законов Кирхгофа решим пример.

    I

    Пример. Дана сложная цепь, изображенная на рисунке. Зная Е1, Е2, Е3, r1 r2 и r3, необходимо определить токи в ветвях I1, I2 и I3.

    Решение.
    1. Анализируя данную схему, устанавливаем, что в ней число ветвей n равно трем, а число узлов k равно двум.
    2. Обозначим направление токов в ветвях. Это не значит, что они будут именно такими, как мы предположили. Истинное направление токов определится в ходе решения задачи.
    3. Уравнения первого закона Кирхгофа необходимо составить для
    (k-1) узлов, или 2-1= 1.
    Количество уравнений второго закона Кирхгофа, которое надо составить для решения задачи будет равно

    m = n-(k- 1) = 3 — (2 — 1) = 3 — 1=2 .

    4. Составим одно уравнение по первому закону Кирхгофа для узла А:

    5. Приняв направление обхода контуров против часовой стрелки, составим m-2 уравнений для замкнутых контуров по второму закону Кирхгофа:
    — для контура № 1:

    6. Решаем систему из трех уравнений.
    Из уравнения, составленного по первому закону Кирхгофа (4),
    имеем
    I1=I2-I3

    Подставим полученное значение тока в уравнение (5)

    Подставим числовые значения и уравнения (5) и (6).

    Упростим эти уравнения и решим их методом подстановки:

    Умножим уравнение (7) на 2 и вычтем из полученного результата уравнение (8)

    далее, подставляя значение I2 в уравнение (8), получим

    5= -3*2,7-4I3; 4I3= -13,1 ;
    I3= -13,1/4=-3,3A .

    Теперь из уравнения (6) находим ток I1:

    В результате решения токи I2 и I1 имеют положительное, а ток I3
    отрицательное значение, следовательно, фактическое направление токов I2
    и I1 совпадает с принятым, а тока I3 — обратно принятому в начале решения задачи.

    stoom.ru

    Это интересно:

    • Способы уплаты налогов и их характеристика Порядок и способы уплаты налогов Порядок уплаты налогов и сборов. Способы уплаты налогов: по декларации, у источника дохода, в момент расходования доходов, в процессе потребления или использования имущества, кадастровый способ. Сущность, назначение, основные элементы […]
    • Форма декларации на возврат подоходного налога Декларация 3-НДФЛ в 2018: бланк Актуально на: 5 февраля 2018 г. Форма 3-НДФЛ 2017 (пример заполнения) Форма 3-НДФЛ – это Налоговая декларация по налогу на доходы физических лиц. Представлять ее по итогам 2017 года должны физические лица-налогоплательщики, которые указаны в […]
    • Образец приказа о введении дресс-кода Приказ о введении дресс кода Приказ: С целью повышения деловой культуры и внедрения единых корпоративных стандартов ПРИКАЗЫВАЮ: 1.Для поддержания единого корпоративного стиля и делового имиджа компании ввести на всех предприятиях Корпорации требования к одежде сотрудников […]
    • Кбк для выплаты страховой части пенсии Кбк для выплаты страховой части пенсии Взносы на обязательное пенсионное страхование с 2017 года 182 1 02 02010 06 2110 160 - пени 182 1 02 02010 06 3010 160 - штрафы Взносы на обязательное пенсионное страхование (долги) за 2016 год и раньше 182 1 02 02010 06 2100 160 - […]
    • Таможенной экспертизы нефтепродуктов Таможенная экспертиза нефтепродуктов Нефть и нефтепродукты являются самыми распространёнными веществами товарооборота во всём мире. В связи с широким распространением автомобилей и различных потребляющих нефтепродукты двигателей и агрегатов, фирмы продают также топливо […]
    • Права потребителей возврат планшета Как вернуть планшет Как вернуть деньги за планшет, вернуть планшет по гарантии. Все мы живём в чудесном веке, веке развития технологий, которые облегчают нам жизнь каждый день. Компьютеры, позволяющие нам делать работу, от больших тяжёлых коробок дошли до лёгких и […]
    • Преступления на камерах наблюдения 8-800-775-82-95 Звонок по России бесплатный Камеры видеонаблюдения – основа современной безопасности Охранное видеонаблюдение не сможет защитить от проникновения преступника, но зафиксирует, при каких обстоятельствах произошло происшествие. Камеры видеонаблюдения с точки […]
    • Субсидии на детские площадки Администрация города Соликамска официальный сайт Детские площадки должны быть безопасными В 2017 году в Соликамске строится 18 детских площадок во дворах многоквартирных домов. На эти цели выделено около шести миллионов рублей. Первые игровые комплексы уже установлены в […]