Закон развития закон мышления

| | 0 Comment

6.1. Закон тождества

Нормативное требование этого закона обеспечивает определенность мышления. Закон гласит:

Хотя в реальном мире все вещи и явления подвержены изменениям и никакого абсолютного тождества не существует, тем не менее, между ними всегда возможно частичное тождество. Мышление, будучи абстрактным отражением действительности, выделяет именно эту ее сторону, обеспечивая тем самым определенность и устойчивость содержания мысли. Аристотель указывал, что «нельзя ничего мыслить, если каждый раз не мыслишь что-нибудь одно».

Нередко приходится слышать от людей, впервые приступающих к изучению логики, что закон тождества противоречит как развитию действительности, так и нашего познания, поскольку и действительность, и наши понятия и суждения о ней не остаются неизменными. Но такое мнение является поспешным и ошибочным, во-первых, потому, что в этом законе идет речь об относительном тождестве; во-вторых закон тождества характеризует прежде всего процесс рассуждения, его определенность и поэтому требует, чтобы в этом процессе любые понятия и суждения оставались неизменными, не подменялись другими. Хотя в ходе исторического развития науки понятия и суждения изменяются как по содержанию, так и по глубине раскрытия сущности исследуемых явлений, но эти его аспекты не служат предметом изучения логики. Последняя имеет дело с готовыми, наличными понятиями и суждениями в конкретных рассуждениях, а не с их изменением и эволюцией в ходе исторического развития. Таким образом, требование логики о тождестве нельзя автоматически переносить на действительность и развитие нашего познания о ней. В то же время нельзя также отвергать принцип тождества как необходимое требование, обеспечивающее определенность нашего мышления. Такая определенность обеспечивается тогда, когда любой элемент мысли сохраняет тождественным свой смысл или содержание.

Существует множество формулировок закона тождества, начиная от аристотелевской и кончая современными, в которых используется символика математической логики. В применении к понятиям обычно указывают на равенство их объемов, поскольку последнее обеспечивает тождественность их содержания, т.е. А = А. Тождественность суждений можно выразить через импликацию или, лучше, через эквивалентность:

Легко заметить, что при символической записи абстрагируются от ряда важных особенностей в суждениях, которые выражаются, хотя и нестрого, в словесной формулировке. Главным в законе тождества является требование сохранения содержания мысли в ходе рассуждения, недопустимость подмены его другим содержанием.

Трудности, возникающие при применении закона тождества, связаны прежде всего с неточностью, неоднозначностью и неясностью языкового выражения мыслей в ходе рассуждения. В разговорной речи, в спорах и дискуссиях нередко одно и то же слово употребляется для выражения разных мыслей. Это явление, получившее название омонимии, не столь тревожно как синонимия, когда разные или близкие по смыслу понятия и мысли выражаются разными словами или словосочетаниями. В результате этого может возникнуть опасность представить тождественные мысли как различные. Нередко поэтому споры и непонимание между людьми возникают именно потому, что они облекают одну и ту же мысль в разные языковые формы. В связи с этим не потеряло своего значения мудрое предупреждение Аристотеля: «Несомненно, что те, кто намерен участвовать друг с другом в разговоре, должны сколько-нибудь понимать друг друга». Поэтому каждое из имен должно быть понятно, и говорить о чем-нибудь, при этом не о нескольких вещах, но только об одной, если же у него несколько значений, то надо разъяснять, которое из них (в нашем случае) имеется в виду.

Еще больше трудностей появляется, когда в обычной речи или в споре используются расплывчатые понятия и утверждения, содержание которых четко не определено и потому допускает различные толкования. Такие понятия не обладают четко очерченным содержанием и объемом, в связи с чем их называют неопределенными, размытыми, а их объемы представляют собой так называемые нечеткие (или расплывчатые) множества, которыми в последние годы стали интересоваться также математики.

Очень часто трудно установить четкие различия между явлениями, их свойствами и отношениями, в силу того что не существует резких границ между ними, в частности, например, из-за непрерывности изменения свойств этих явлений. Разграничение и определенность иногда достигается за счет огрубления, упрощения и схематизации действительности, а возникающие вследствие этого понятия и мысли оказываются неадекватными реальности. Кроме того, само разграничение, устанавливаемое людьми, становится во многих случаях относительным и условным, ибо для этого необходимо задать соответствующие критерии или способы сравнения и измерения. Действительно, свойства, которые отображаются в понятиях, отличаются друг от друга тем, что одни из них допускают лишь сравнение в терминах «больше», «меньше» или «равно», другие же могут быть точно измерены с помощью подходящей единицы измерения. Наиболее точными являются количественные понятия, выражаемые с помощью чисел. Именно они широко используются в математике и точном естествознании. В гуманитарных науках, напротив, преобладают понятия, отображающие ценностные установки и предпочтения людей, которые выражают их субъективные оценки, и, следовательно, трудно поддающиеся точному определению. В связи с этим небесполезно вспомнить предостережение нашего выдающегося математика и кораблестроителя академика А.Н. Крылова. «Надо помнить, – писал он, – что есть множество «величин», т.е. того, к чему приложимы понятия «больше» и «меньше», но величин, точно неизмеримых, например: ум и глупость, красота и безобразие, храбрость и трусость, находчивость и тупость и т.д.»

Нарушение требований закона тождества происходит обычно в ходе спора или дискуссии, когда его участники вместо одного понятия или суждения используют другое, быть может, и близкое по содержанию, но не тождественное первому. Нередко этот закон нарушается в ходе доказательства, особенного устного, когда происходит отступление от исходного тезиса, т.е. того, что требуется доказать, или же этот тезис подменяется другим. Такие нарушения порой трудно заметить, поскольку обычно происходит лишь небольшое изменение в содержании понятия и смысла тезиса. Все отмеченные нарушения легче предупредить, если с самого начала спора или дискуссии по возможности точно определить понятия и ясно сформулировать выдвигаемые тезисы и утверждения.

www.bibliotekar.ru

Закон противоречия

Закон противоречия, или закон непротиворечия — это один из основных общелогических принципов (см. Логика), согласно которому в процессе рассуждения два взаимно противоречащих высказывания или суждения не могут быть истинными в одно и то же время и в одном и том же отношении, то есть одно из них должно быть ложным. Закон непротиворечия указывает на недопустимость одновременного утверждения (в рассуждении, в тексте или теории) двух суждений, из которых одно является логическим отрицанием другого, или — в более широком смысле — утверждений о тождестве заведомо различных объектов, поскольку обычно правила логики таковы, что позволяют из противоречия выводить произвольные суждения, что обесценивает содержательный смысл умозаключений или теорий. Закон противоречия относится к четырём так называемым основополагающим логическим законам — закону тождества, закону противоречия, закону исключённого третьего и закону достаточного основания (см. Законы логики), которые подразумевают наиболее общие принципы (или постулаты) теоретического мышления и используются при оперировании понятиями и суждениями, в умозаключениях, доказательствах и опровержениях, и поэтому присутствуют практически во всех логических системах.

Закон противоречия выражает выражает одну из наиболее существенных особенностей любого рационального мышления — непротиворечивость. Он содержит в себе запрещение мыслить и рассуждать противоречиво, указывая на противоречие как на серьёзную логическую ошибку, несовместимую с рациональным мышлением. Закон противоречия говорит о противоречивых (взаимоисключающих) высказываниях — отсюда его название. Но отрицая противоречие и объявляя его ошибкой, он тем самым требует непротиворечивости — отсюда его другое распространённое наименование — закон непротиворечия. При использовании понятий истины и лжи закон противоречия формулируют так: из двух противоречащих друг другу высказываний одно является ложным. В этой версии закон звучит наиболее убедительно, так как подчёркивает опасности, связанные с противоречием. Истина и ложь — это две несовместимые характеристики высказывания: истинное высказывание соответствует действительности, ложное не соответствует ей. Поэтому тот, кто допускает противоречие, вводит в своё рассуждение ложное высказывание, тем самым стирая границу между истиной и ложью.

Обычно логическое противоречие состоит из трёх структурных элементов: некоторого суждения, его отрицания и показателя соистинности суждений, используемых в определённом высказывании или утверждении. В общем виде противоречие может быть описано следующей формулой: A и не-A, где A — суждение, не-A (неверно что A) — его отрицание, а связка «и» — показатель соистинности суждения (утверждения) и его отрицания. Таким образом, если обозначить буквой A произвольное высказывание, то выражение не-A (неверно, что A) будет отрицанием этого высказывания. Идея, выражаемая законом противоречия, проста: высказывание и его отрицание не могут быть вместе истинными. Используя вместо высказываний буквы (например, букву A), эту идею можно передать так: неверно, что A и не-A. Применение в этом выражении буквы A несущественно и обязано, по-видимому , особенности латинского алфавита; равным образом для выражения того же закона можно было бы использовать буквы B, C и так далее.

Закон противоречия содержит в себе несколько предписаний:

  • Исключение взаимно противоречащих суждений в структуре одного рассуждения, утверждения, вывода.
  • Определение критерия логичности рассуждения как непротиворечивости.
  • Установление истинностных квалификаций суждений, используемых в рассуждении.
  • Выявление и различение явных и скрытых противоречий в структуре рассуждения.
  • Выявление и различение реальных и мнимых противоречий.
  • Логический принцип, выражаемый законом противоречия, восходит к софистам и был известен ещё Сократу (и часто им использовался, согласно Платону). Аристотель формулирует этот закон прежде всего онтологически, как универсальный принцип бытия, наиболее достоверный из всех начал: «… невозможно, чтобы одно и то же в одно и то же время было и не было присуще одному и тому же в одном и том же отношении» («Метафизика». IІ, 3 1005b 20–21). Несколько раньше формулировка закона как принципа самого реального мира встречается у Платона: «Невозможно быть и не быть одним и тем же». Также у Аристотеля фигурирует не только онтологическая, но и чисто логическая формулировка этого закона: «… наиболее достоверное положение — это то, что противолежащие друг другу высказывания не могут быть вместе истинными» («Метафизика». IІ, 7 1011b 13–14). Аристотель представил семь «доказательств» незаменимости этого закона.

    В Средние века активно обсуждался вопрос: «подчиняется ли закону противоречия Бог, могущество которого беспредельно?» Большинство философов и теологов считало, что даже Бог не может противоречить самому себе. В сущности, это означало, что Бог не всевластен: выше его — законы логики и прежде всего закон, запрещающий противоречие.

    Близкая к современной формулировка закона противоречия встречается у Г. В. Лейбница: «Одно и то же высказывание не может быть одновременно истинным и ложным». Лейбниц считал закон противоречия одной из основ математики и полагал, что «один этот принцип достаточен для того, чтобы вывести всю арифметику и всю геометрию, а стало быть, все математические принципы» (Лейбниц Г. В. Сочинения, т. 1. — М., 1982, с. 433). И. Кант, однако, считал, что закон противоречия «… есть общий, хотя только негативный, критерий всякой истины и относится только к логике» (Кант И. Сочинения, т. 3. — М., 1994, с. 130).

    Наиболее ясную формулировку и объяснение закон противоречия получает в современной логике, где он может формулироваться как для высказываний (см. Логика высказываний), так и для предикатов (см. Логика предикатов), как на семантическом, так и на синтаксическом уровне; его формулировки модифицируются в связи с особенностями рассматриваемых логических систем. В исчислении высказываний (или на содержательном уровне в логике высказываний) он принимает вид доказуемой (тождественно-истинной) формулы ⌉(A &⌉A) (здесь A — это пропозициональная переменная, могущая восприниматься как обозначение произвольного высказывания), а на методологическом уровне — как утверждение о доказуемости (или истинности, тавтологичности) этой формулы. В исчислении предикатов закон противоречия получает бесконечное множество формулировок в зависимости от числа аргументных мест, используемых в его формулировке предикатов; например, для одноместных предикатов: ∀x ⌉(A(x) & ⌉A(x)) (никакой предмет не может одновременно обладать и не обладать одним и тем же свойством), для двуместных предикатов: ∀xy ⌉(B(x, y) & ⌉B(x, y)) (никакие два предмета не могут одновременно находиться и не находиться в одном и том же отношении). Эти чисто логические формулировки закона противоречия имеют в то же время очевидные «онтологические» (относящиеся к реальной действительности) интерпретации. Мотивировка всех этих формулировок следующая: в подавляющем большинстве логических и логико-математических исчислений выводим (доказуем) принцип A & ⌉AB (из противоречия следует всё, что угодно) или хотя бы более слабый принцип A & ⌉A ⊃ ⌉B (из противоречия следует отрицание любого утверждения). Поэтому логические системы, в которых нарушается данный принцип, помимо своей очевидной неприемлемости с интуитивной точки зрения (несоответствие с реальной действительностью), не имеют к тому же никакой логической ценности: наличие противоречий (антиномий, парадоксов) автоматически приводит к тому, что в такой системе доказуемо (или хотя бы опровержимо) любое формулируемое на её языке высказывание. Поэтому непротиворечивость (то есть справедливость закона противоречия) логической (и вообще научной) теории является столь важным и актуальным критерием её пригодности, а сам закон противоречия сохраняет своё фундаментальное значение.

    Нарушение закона противоречия приводит к тому, что в большинстве хорошо известных логических исчислений доказуема любая формула, сформулированная на языке этого исчисления, и тогда такая логика не представляет никакого интереса. Однако, несмотря на такую фундаментальность закона противоречия, его значимость в 1910 году одновременно и независимо друг от друга была поставлена под сомнение Н. А. Васильевым и Я. Лукасевичем. Первый предпринял попытки построения системы логики, отказываясь от онтологического смысла этого закона; второй подверг серьёзной критике все «доказательства» закона противоречия у Аристотеля. В итоге к концу XX века получили развитие паранепротиворечивые логики (см. Логика паранепротиворечивая), в которых закон противоречия не имеет места, и тем не менее в таких логических системах не доказуемо всё что угодно.

    gtmarket.ru

    Законы логики

    Законы логики (или логические законы) — это общее название множества законов, образующих основу логической дедукции (см. Дедукция). Понятие о логическом законе восходит к античному понятию о логосе (см. Логос) как о предпосылке объективной («природной») правильности рассуждений. Поскольку логика (см. Логика) изучает характер связи мыслей в процессе рассуждения, существуют определённые формальные и содержательные правила, следование которым обязательно. Различные по своей структуре и степени сложности рассуждения подчиняются разным правилам. Среди них можно выделить основные и производные: основные правила имеют более общий характер, производные — выводятся из основных. Наряду с этим существует такой тип правил логики, которые можно назвать всеобщими. Обычно такие правила называют законами мышления. Под законом вообще имеют в виду внутреннюю, необходимую и существенную связь явлений. Законы мышления представляют собой операциональные директивы мышления. Их происхождение обусловлено рациональной активностью субъекта. Выраженная в правилах, нормах, рекомендациях, целесообразная активность находит своё воплощение в принципах, имеющих всеобщий характер. В отличие от законов естествознания, которые описывают связь явлений природы, многократно повторяемую в идентичных условиях, законы мышления предписывают определённые способы интеллектуальной деятельности. Цель законов логики — сформулировать основания правил и рекомендаций, следуя которым можно достичь истины. Поэтому законы мышления не являются законами в том смысле, в котором указанный термин используется для описаний явлений природы. Таким образом, законы логики представляют собой законы правильного мышления человека о мире, а не законы самого мира.

    Правила мышления впервые получают логическое содержание у Аристотеля, положившего начало систематическому описанию и каталогизации таких схем логических связей элементарных высказываний в сложные, истинность которых вытекает из одной только их формы, а точнее — из одного только понимания смысла логических связей, безотносительно к истинностному значению элементарных высказываний. Большинство логических законов, открытых Аристотелем, представляют собой законы силлогизма. Позже были открыты и другие законы, и даже было установлено, что совокупность законов логики бесконечна. В некотором смысле рассмотреть эту совокупность удаётся с помощью различных формальных теорий логического рассуждения — так называемых логических исчислений, в которых интуитивное понятие «логический закон» реализуется в точном понятии «общезначимой формулы» данного исчисления, что, в свою очередь, делает понятие «логический закон» относительным. Однако типом логического исчисления полагаются одновременно и границы этой относительности. При этом тип исчисления, как правило, не является делом произвольного выбора, а диктуется (или подсказывается) «логикой вещей», о которых хотят рассуждать, а также нашей субъективной уверенностью в том или ином характере этой логики. Исчисления, основанные на одной и той же гипотезе о характере «логики вещей», являются эквивалентными в том смысле, что в них каталогизируются одни и те же логические законы. Например, исчисления, основанные на гипотезе двузначности, несмотря на всё их внешнее разнообразие, описывают одну и ту же область классических законов логики — мир тождественных истин (или тавтологий), издавна получивших философскую характеристику «вечных истин» или «истин во всех возможных мирах» (см. Возможные миры). Логикой вещей, отражением которой исторически явились логические законы так называемой интуиционистской логики, является логика умственных математических построений — «логика знания», а не «логика бытия».

    Логические законы отличаются от логических правил вывода. Первые представляют класс общезначимых выражений и формулируются в объектном языке исчисления. Вторые служат для описания фактов логического следования (см. Логическое следование) одних выражений из других, не обязательно общезначимых, и формулируются в метаязыке исчисления. В отличие от законов логики, правила вывода имеют вид предписаний и носят, по существу, нормативный характер. При построении исчислений без правил вывода обойтись нельзя, а без законов логики, в принципе, можно (именно так и поступают в исчислениях естественного вывода). Тем не менее, изучение логических законов образует естественный исходный пункт логического анализа приемлемых (логически правильных) способов рассуждений (умозаключений), поскольку понятие «приемлемое» или «логически правильное» рассуждение уточняется через понятие «логический закон».

    В традиционной формальной логике термин «закон логики» имел узкий смысл и применялся только к четырём так называемым основополагающим законам правильного мышления — к закону тождества, закону непротиворечия, к закону исключённого третьего и к закону достаточного основания:

  • Закон тождества. В процессе умозаключения всякое высказывание и суждение должны оставаться тождественными самим себе (см. Закон тождества).
  • Закон непротиворечия. Два противоположных суждения не могут быть истинными в одно и то же время и в одном и том же отношении (см. Закон непротиворечия).
  • Закон исключённого третьего. Из двух противоречащих суждений одно истинно, другое ложно, а третьего не дано (см. Закон исключённого третьего).
  • Закон достаточного основания. Никакое суждение не может утверждаться без достаточного основания (см. Закон достаточного основания).
  • Указанная «канонизация» термина «закон логики» в настоящее время является данью традиции и не отвечает действительному положению вещей. Тем не менее, эти законы можно принять в методологическом смысле как определённые принципы (или постулаты) теоретического мышления, так как они являются наиболее общими и используются при оперировании понятиями и суждениями, в умозаключениях, доказательствах и опровержениях, и поэтому присутствуют практически во всех логических системах.

    В этом смысле закон тождества (lex identitatis) истолковывается как принцип постоянства или принцип сохранности предметного и смыслового значений суждений (высказываний) в некотором заведомо известном или подразумеваемом контексте (в выводе, доказательстве, теории). В языке логических исчислений указанная сохранность обычно выражается формулой AA. Принятие закона тождества для суждения A не означает, вообще говоря, принятия самого A. Но если A принято, то закон тождества принимается с необходимостью для исчислений с общезначимой формулой A ⊃ (AA). Для исчислений, включающих отрицание, это сведение абстракции постоянства суждения к принятию самого суждения имеет форму закона: (A ⊃ ¬ (AA) ⊃ ¬ A), то есть если при допущении суждения для него отрицается закон тождества, то тем самым отрицается и само это суждение.

    Закон непротиворечия (lex contradictionis) указывает на недопустимость одновременного утверждения (в рассуждении, в тексте или теории) двух суждений, из которых одно является логическим отрицанием другого, то есть суждений вида A и ¬ A или их конъюнкции, или эквиваленции, или — в более широком смысле — утверждений о тождестве заведомо различных объектов, поскольку обычно правила логики таковы, что позволяют из противоречия выводить произвольные суждения, что обесценивает содержательный смысл умозаключений или теорий. Наличие противоречия в рассуждении (теории) создаёт парадоксальную ситуацию и нередко указывает на несовместимость посылок, положенных в основу рассуждения (теории). Этим обстоятельством часто пользуются в косвенных доказательствах.

    Закон исключённого третьего (lex exclusii tertii) на логическом языке записывается формулой A ⌵ ¬ A и утверждает, что нет ничего среднего (промежуточной оценки) между членами противоречивой пары (отсюда другое латинское название этого закона — tertium non datur). В методологическом плане этот закон выражает конструктивно неоправданную идею о разрешимости (потенциально осуществимом указании на истинность или ложность) произвольного суждения. В отличие от формулы, соответствующей закону противоречия, формула, соответствующая закону исключённого третьего, не выводима в интуиционистских и конструктивных исчислениях, хотя и неопровержима в них. Дихотомия установленных истины и лжи неоспорима, но дихотомия утверждения и отрицания оспаривалась неоднократно. Наиболее последовательную критику закона исключённого третьего дал Л. Э. Я. Брауэр. В свете его критики этот закон следует рассматривать только как принцип (или постулат) классической логики.

    Закон достаточного основания (lex rationis determinatis seu sufficientis) выражает методологическое требование обоснованности всякого знания, всякого суждения, которое мы хотели бы принять за отображение истинного (действительного) положения вещей. В этом смысле он применим не только к выводному знанию (в частности, к аксиомам и постулатам научных теорий), но и ко всей области фактических истин, не имеющих отношения к формальной логике. Не случайно Г. В. Лейбниц, который ввёл этот принцип в научный обиход, относил его в первую очередь не к логике, а ко всем событиям, которые случаются в мире.

    В приложениях логических законов к конкретным ситуациям с особой наглядностью обнаруживается их общая черта: все они представляют собой тавтологии и не несут содержательной, «предметной» информации. Это — общие схемы, отличительная особенность которых в том, что, подставляя в них любые конкретные высказывания (как истинные, так и ложные), мы обязательно получим истинное выражение. Указанные законы мышления имеют в логике такое же значение, какое в математике имеют аксиомы (см. Аксиома) или постулаты и обладают таким же формальным характером, как и формулы алгебры: в последних не говорится о том, по отношению к каким числовым значениям они выполняются, а законы мышления не содержат в себе содержательных характеристик, то есть не квалифицируют то, что именно должно или не должно отождествляться, что именно и чему должно или не должно противоречить, и так далее. Именно в этом и заключается их обобщающий характер как операциональных директив правильного мышления и рассуждения.

    4 закона логики

    В поле зрения логики как науки о познавательной деятельности пребывают не только формы мышления, но и отношения, возникающие между ними в мыслительном процессе. Дело в том, что не каждая совокупность понятий, суждений, умозаключений дает возможность построить эффективное размышление. Для него обязательными атрибутами являются последовательность, непротиворечивость, обоснованная связь. Эти аспекты, необходимые для эффективных размышлений, призваны обеспечить логические законы.

    В тренинге логического мышления на нашем сайте, мы даем короткую характеристику основным логическим законам. В этой статье рассмотрим 4 закона логики более детально, с примерами, ведь, как справедливо отметил автор учебника по логике Никифоров А. Л.: «Попытка нарушить закон природы способна убить вас, но точно так же попытка нарушить закон логики убивает в вас разум».

    Логические законы

    Чтобы избежать искаженного представления о предмете статьи, укажем, что, говоря об основных законах логики, мы имеем в виду законы формальной логики (тождества, непротиворечия, исключенного третьего, достаточного основания), а не логики предикатов.

    Логический закон – внутренняя существенная, необходимая связь между логическими формами в процессе построения размышления. Под логическим законом Аристотель, который, к слову, первым сформулировал три из четырех законов формальной логики, подразумевал предпосылку к объективной, «природной» правильности рассуждения.

    Многие учебные материалы часто предлагают следующие формулы для записи основных законов логики:

    • Закон тождества – А = А, или А ⊃ А;
    • Закон непротиворечия – A ∧ A;
    • Закон исключенного третьего – A ∨ A;
    • Закон достаточного основания – А ⊃ В.
    • Стоит помнить, что такое обозначение во многом условно и, как отмечают ученые, не всегда в полной мере способны раскрыть суть самих законов.

      1. Закон тождества

      Аристотель в своей «Метафизике» указывал на тот факт, что размышление невозможно «если не мыслить каждый раз что-нибудь одно». Большинство современных учебных материалов закон тождества формулирует так: «Любое высказывание (мысль, понятие, суждение) на протяжении всего рассуждения должно сохранять один и тот же смысл».

      Отсюда следует важное требование: запрещается тождественные мысли принимать за различные, а различные – за тождественные. Поскольку естественный язык позволяет выражать одну и ту же мысль через различные языковые формы, то это может стать причиной подмены исходного смысла понятий и к замене одной мысли другой.

      Чтобы подтвердить закон тождества Аристотель обратился к анализу софизмов – ложных высказываний, которые при поверхностном рассмотрении кажутся правильными. Наиболее известные софизмы, наверное, слышал каждый. Например: «Полупустое есть то же, что и наполовину полное. Если равны половины, значит, равны и целые. Следовательно, пустое есть то же, что и полное» или «6 и 3 есть четное и нечетное. 6 и 3 есть девять. Следовательно, 9 есть и четное, и нечетное».

      Внешне форма рассуждения правильная, но при анализе хода рассуждения обнаруживается ошибка, связанная с нарушением закона тождества. Так, во втором примере всем понятно, что число 9 не может быть одновременно и четным, и нечетным. Ошибка в том, что союз «и» в условии употребляется в разных значениях: в первом как объединение, одновременная характеристика чисел 6 и 3, а во втором – как арифметическое действие сложения. Отсюда и ошибочность вывода, ведь в процессе рассуждения к предмету были применены разные смыслы. По сути, закон тождества – требование в определенности и неизменности мыслей в процессе рассуждения.

      Извлекая будничный смысл из вышесказанного остановимся на понимании того, к чему относится закон тождества. В соответствии с ним всегда стоит помнить, что прежде чем приступить к обсуждению любого вопроса, нужно четко определить его содержание и неизменно ему следовать, не смешивая понятий и избегая двусмысленностей.

      Закон тождества не предполагает что вещи, явления и понятия неизменны в некоторых моментах, он основывается на том, что мысль, зафиксированная в определенном языковом выражении, несмотря на все возможные преобразования, должна оставаться тождественной сама себе в пределах конкретного соображения.

      2. Закон непротиворечия (противоречия)

      Формально-логический закон непротиворечия основывается на доводе, что два несовместимых друг с другом суждения не могут быть одновременно истинными; как минимум одно из них ложно. Оно вытекает из понимания содержания закона тождества: в одно время, в одном отношении истинными не могут быть два суждения о предмете, если одно из них что-нибудь утверждает о нем, а второе это же отрицает.

      Сам Аристотель писал: «Невозможно, чтобы одно и то же одновременно было и не было присуще одному и тому же, в одном и том же смысле».

      Разберемся с этим законом на конкретном примере – рассмотрим следующие суждения:

      1. Каждый посетитель сайта 4brain имеет высшее образование.
      2. Ни один посетитель сайта 4brain не имеет высшего образования.
      3. Для того, чтобы определить какое высказывание истинно, обратимся к логике. Можем утверждать, что одновременно оба высказывания быть правдивыми не могут, поскольку являются противоречивыми. Из этого следует, что если доказать истинность одного из них, то второе обязательно будет ошибочным. Если же доказать ошибочность одного, то второе может быть как истинным, так и неправдивым. Чтобы узнать правду, исходные данные достаточно проверить, например, с помощью метрики.

        По сути, этот закон запрещает утверждать и отрицать одно и то же одновременно. Внешне закон противоречия может показаться очевидным и вызвать справедливое сомнение по поводу целесообразности выделения столь простого вывода в логический закон. Но здесь есть свои нюансы и связаны они с природой самих противоречий. Так, контактные противоречия (когда что-либо утверждается и отрицается почти в одно и то же время, например, уже следующим предложением в речи) более чем очевидны и практически не встречаются. В отличие от первой разновидности, дистантные противоречия (когда между противоречивыми суждениями находится значительный интервал в речи или тексте) – более распространенные и их нужно избегать.

        Чтобы эффективно использовать закон противоречия достаточно правильно учитывать условия его употребления. Основным требованием является соблюдение в высказываемой мысли единства времени и отношения между предметами. Другими словами, нарушением закона непротиворечия не может считаться утвердительное и отрицательное суждения, которые относятся к разному времени или употребляются в разных отношениях. Приведем примеры. Так, высказывания «Москва – столица» и «Москва – не столица» могут быть одновременно правильными, если мы говорим в первом случае о современности, а во втором – об эпохе Петра I, который, как известно, перенес столицу в Санкт-Петербург.

        В плане разности отношений истинность противоречивых суждений можно передать на таком примере: «Моя подруга хорошо владеет испанским языком» и «Моя подруга плохо владеет испанским языком». Оба утверждения могут быть истинны, если в момент речи в первом случае говорится об успехах в изучении языка по университетской программе, а во втором о возможности работы профессиональным переводчиком.

        Таким образом, закон противоречия фиксирует отношения между противоположными суждениями (логическими противоречиями) и никаким образом не касается противоположных сторон одной сущности. Его знание необходимо для дисциплины процесса мышления и исключения возможных неточностей, которые возникают в случае нарушения.

        3. Закон исключенного третьего

        Намного «знаменитей», чем предыдущие два закона Аристотеля, в широких кругах, благодаря значительной распространенности сентенции «tertium non datur», что в переводе значит «третьего не дано» и отображает суть закона. Закон исключенного третьего – требование к мыслительному процессу, согласно с которым если в одном из двух выражений что-либо о предмете утверждается, а во втором отрицается – одно из них обязательно истинно.

        Аристотель в Книге 3 «Метафизики» писал: «…ничего не может быть посредине между двумя противоречивыми суждениями об одном, каждый отдельный предикат необходимо либо утверждать, либо отрицать». Древнегреческий мудрец отмечал, что закон исключенного третьего применим лишь в случае высказываний, употребленных в прошедшем или настоящем времени и не работает с будущим временем, ведь нельзя сказать с достаточной долей уверенности произойдет или не произойдет что-либо.

        Очевидно, что закон непротиворечия и закон исключенного третьего тесно связаны. Действительно, те суждения, которые подходят под действие закона исключенного третьего, подходят и под закон непротиворечия, но не все суждения последнего, попадают под действие первого.

        Закон исключенного третьего применим к таким формам суждений:

        Одно суждение утверждает что-либо о предмете в одном и том же отношении в одно время, а второе – то же самое отрицает. Например: «Страусы – птицы» и «Страусы – не птицы».

      4. «Все А есть В», «Некоторые А не есть В».

    Одно суждение утверждает что-либо относительно всего класса предметов, второе – отрицает это же, но относительно лишь некоторой части предметов. Например: «Все учащиеся группы ИН-14 сдали сессию на отлично» и «Некоторые учащиеся группы ИН-14 не сдали сессию на отлично».

    • «Ни одно А не есть В», «Некоторые А есть В».
    • Одно суждение отрицает характеристику класса предметов, а второе эту же характеристику утверждает в отношении некоторой части предметов. Пример: «Ни один житель нашего дома не пользуется Интернетом» и «Некоторые жители нашего дома пользуются Интернетом».

      Позже, начиная с эпохи Нового времени, закон был раскритикован. Известная формулировка, применявшаяся для этого: «Насколько верно утверждать, что все лебеди черные, исходя из того, что нам до сих пор встречались только черные?». Дело в том, что закон применим лишь в аристотелевской двузначной логике, которая основывается на абстракции. Поскольку ряд элементов бесконечен, проверить все альтернативы в подобного рода суждениях очень сложно, здесь требуется применение других логических принципов.

      4. Закон достаточного основания

      Четвертый из основных законов формальной или классической логики был сформулирован по прошествии значительного периода времени после обоснования Аристотелем первых трех. Его автор – видный немецкий ученый (философ, логик, математик, историк; этот список занятий можно продолжить) – Готфрид Вильгельм Лейбниц. В своей работе о простых субстанциях («Монадология», 1714 г.) он писал: «…ни одно явление не может оказаться истинным или действительным, ни одно утверждение справедливым, – без достаточного основания, почему именно дело обстоит так, а не иначе, хотя эти основания в большинстве случаев вовсе не могут быть нам известны».

      Современное определение закона Лейбница основано на понимании, что всякое положение для того, чтобы считаться вполне достоверным, должно быть доказанным; должны быть известны достаточные основания, в силу которых оно считается истинным.

      Функциональное предназначение данного закона выражается в требовании соблюдать в мышлении такую черту, как обоснованность. Г. В. Лейбниц, по сути, объединил законы Аристотеля с их условиями определенности, последовательности и непротиворечивости рассуждения, и на основании этого разработал понятие о достаточном основании для того, чтоб характер размышления был логичным. Немецкий логик хотел этим законом показать, что в познавательной или практической деятельности человека рано или поздно наступает момент, когда недостаточно иметь просто истинное утверждение, нужно чтобы оно было обоснованным.

      При детальном анализе оказывается, что закон достаточного основания мы применяем в повседневной жизни довольно часто. Делать выводы, основываясь на фактах – значит применять этот закон. Школьник, указывающий в конце реферата список использованной литературы и студент, оформляющий ссылки на источники в курсовой работе – этим они подкрепляют свои выводы и положения, следовательно, используют закон достаточного основания. С тем же самым люди разных профессий сталкиваются в процессе своей работы: доцент – при поиске материала для научной статьи, спичрайтер – при написании речи, прокурор – во время подготовки обвинительного выступления.

      Нарушение закона достаточного основания также широко распространено. Иногда причиной тому неграмотность, иногда – специальные уловки с целью получения выгоды (например, построение аргументации с нарушением закона для победы в споре). Как пример, высказывания: «Этот человек не болеет, у него ведь нет кашля» или «Гражданин Иванов не мог совершить преступление, ведь он прекрасный работник, заботливый отец и хороший семьянин». В обоих случаях ясно, что приводимые аргументы в недостаточной мере обосновывают тезис, а, значит, являются прямым нарушением одного из основных законов логики – закона достаточного основания.

      Интересуетесь развитием логического мышления и мышления глобально? Обратите внимание на курс «Когнитивистика»».

      Отзывы и комментарии

      Поделиться своими знаниями в области законов классической логики, порекомендовать литературу для детального ознакомления с ними, а также обсудить данную статью вы можете путем добавления комментария в специальное поле ниже.

      4brain.ru

      Это интересно:

      • Льготы при штрафе гибдд 50-процентная скидка на штрафы ГИБДД с 1 января 2016 года Как будет работать новый закон, предусматривающий оплату половины штрафа? Напомним, тем, кто не знает, упустив нововведения в законодательстве. С 1.01.2016 года на территории Российской Федерации начинает […]
      • Who that which правило Who that which правило 6.2. Использование which и that в относительных придаточных предложениях Придаточное предложение, начинающееся со слова that, всегда является ограничивающим, т.е. такое придаточное предложение запятыми не выделяется. Например: The book that I so […]
      • Возмещения подоходного налога 2014 Возврат подоходного налога: за какой период Актуально на: 13 апреля 2016 г. Вопрос, с которым приходится разбираться новоиспеченным собственникам жилья для возврата подоходного налога, – до какого числа можно подать документы на вычет в ИФНС? Так вот. Если вы будете […]
      • Как вернуть цвет авто Лада 2109 , цвет "Изумруд" › Бортжурнал › Восстановление цвета Попытался хоть как-нибудь восстановить цвет машины. Начитался в интернетах кучи полезной и не совсем информации, выбрал более-менее подходящую для меня и отправился по магазинам. Времени было не особо много, […]
      • Разрешение на кота Россельхознадзор / Ввоз. Вывоз. Транзит федеральная служба по ветеринарному и фитосанитарному надзору О ввозе на территорию Российской Федерации собак и кошек, постоянно проживающих с владельцами, для личного пользования в количестве не более двух голов Ветеринарные […]
      • Статья 158 ук рф часть 1 Кража. ст 158 ч 1 УК РФ О чем сообщается в ст 158 ч 1 УК РФ ? Когда человек, нарушая закон, отнимает у другого человека имущество - такие действия зовутся хищением Когда человек, нарушая закон, отнимает у другого человека имущество, принадлежащее последнему, или совершает […]
      • Преступившее закон деликтоспособное лицо Олимпиада школьников по праву задания для 9 класса I.Отметьте один или несколько вариантов правильных ответов 1. Верховным главнокомандующим в РФ является: В. Секретарь Совета Безопасности РФ; Г. Президент РФ. 2. Какого числа во всем мире отмечают Международный день прав […]
      • Возможность иметь права и обязанности в сфере государственного управления Возможность иметь права и обязанности в сфере государственного управления Тема 5. АДМИНИСТРАТИВНО-ПРАВОВОЙ СТАТУС ГРАЖДАНИНА 5.1. Понятие, элементы, правовая основа и виды административно-правового статуса гражданина Человек, его права и свободы являются высшей ценностью. […]