Правило построения эпюр поперечных сил и изгибающих моментов

| | 0 Comment

Правила построения эпюр поперечных сил и изгибающих моментов

Эпюры поперечных сил Q и изгибающих моментов М представляют собой графическое изображение этих величин по длине балки. Для построения этих эпюр определяют численное значение поперечных сил Q и изгибающих моментов М для ряда сечений балки и по ним строят соответствующие графики. Правило знаков для Q и М:

В качестве примера на рис. 16 приводятся эпюры Q и М для балок с различным видом нагружения.

Перечислим основные свойства эпюр Q и М, которые являются следствием дифференциальных зависимостей.

1. На участке, где нет распределенной нагрузки (q = 0), поперечная сила Q постоянна, а изгибающий момент изображается наклонной прямой линией (рис. 16 а, г).

2. На участках с постоянной равномерно распределенной нагрузкой (q = const) эпюра Q линейная, а эпюра М изображает квадратичную параболу (рис. 16 б, в). Кривизна параболы имеет знак распределенной нагрузки.

3. В точках приложения сосредоточенных сил эпюра Q имеет скачки, равные сосредоточенным силам, а эпюра М – изломы (рис. 16 а), острие которых направлено навстречу сосредоточенной силе.

4. В точках приложения сосредоточенных моментов эпюра М имеет скачки, равные сосредоточенным моментам; на эпюру Q сосредоточенные моменты не влияют (рис. 16 г).

5. В точках, где поперечная сила Q равна нулю, касательная к эпюре М горизонтальная, т.е. момент М имеет максимальное или минимальное значение.

mydocx.ru

Лекции и примеры решения задач механики

Правила знаков сил и моментов при изгибе

При плоском поперечном изгибе в сечениях балки возникает внутренняя поперечная сила Q и внутренний изгибающий момент M.

Для их расчета и последующего построения эпюр принято следующее правило знаков:

Знаки поперечных сил

Внутренняя поперечная сила Q принимается положительной (т.е. Q>0), если она стремится повернуть отсеченную часть балки по ходу часовой стрелки.

Правило знаков для поперечной силы

При составлении уравнений равновесия отсеченных частей балки, правило знаков для внешних нагрузок (например сосредоточенной силы F) определяется аналогично.

Другими словами, внешние силы и распределенные нагрузки, стремящиеся повернуть отсеченную часть балки относительно рассматриваемого сечения по ходу часовой стрелки считаются положительными, и наоборот.

Знаки изгибающих моментов

Внутренний изгибающий момент M принимается положительным (т.е. M>0), если он стремится сжать верхние слои отсеченной части балки на рассматриваемом участке.

Правило знаков для изгибающего момента

Для внешних сосредоточенных моментов и моментов сил правило знаков аналогично, т.е. положительными считаются внешние моменты, сосредоточенные силы и распределенные нагрузки, сжимающие верхние слои балки.

Построение эпюр для двухопорной балки

Для заданной двухопорной балки, нагруженной силой F, моментом M и равномерно распределенной нагрузкой q построить эпюры внутренних поперечных сил Qy и изгибающих моментов Mx.

Решение задачи

Опорные реакции для данной расчетной схемы были определены здесь.

Балка имеет 3 силовых участка. Обозначим их римскими цифрами, например, справа налево.

Для расчета внутренних силовых факторов по участкам балки воспользуемся методом сечений.

Расчет значений

Начнем с первого силового участка (CD).

Проведем поперечное сечение в пределах участка, в любом месте между точками C и D.

Данное сечение делит балку на две части (левую и правую). Для определения внутренних факторов можно выбрать любую из них, но лучше выбирать менее нагруженную часть балки. Очевидно это будет ее правая часть.

Расстояние от правой границы участка до рассматриваемого сечения обозначим переменной z1, которая может принимать значения от 0 до 1,5 метров (т.е. 0 ≤ z1 ≤ 1,5м).

Мысленно отбросим на время всю левую часть балки.

Поперечная сила Q в данном сечении первого участка будет равна сумме всех внешних сил приложенных к рассматриваемой части балки с учетом их знака, т.е.

В данном выражении отсутствует переменная z1, что говорит о том, что внутренняя поперечная сила будет одинакова для всех сечений этого участка.

Изгибающий момент M в рассматриваемом сечении определяется как сумма изгибающих моментов от всех внешних нагрузок выбранной части балки.

С учетом правила знаков при изгибе получаем

В полученном выражении переменная z1 является плечом момента силы F для данного сечения балки.

Как видно из полученного выражения изгибающий момент по длине участка меняется линейно (т.к. z1 в первой степени), поэтому для построения эпюры на данном участке нам достаточно двух точек.

Этими точками будут значения изгибающего момента на границах I участка, т.е. при z1=0 и при z1=1,5м

На первом участке внутренние усилия определены.

Переходим на второй силовой участок (BC).

Так же начинаем с того, что проводим сечение в любом месте участка и выбираем рассматриваемую часть балки. Здесь также удобнее рассмотреть правую часть балки.

Расстояние до рассматриваемого сечения от правой границы участка обозначим переменной z2. При этом 0 ≤ z2 ≤ 1м.

Запишем выражения и рассчитаем граничные значения внутренней поперечной силы Q

И изгибающего момента M

В выражении для MxII переменная во второй степени, поэтому эпюра моментов на втором участке будет иметь вид параболы.

Как известно, для построения параболы необходимо знать положение минимум трех ее точек. Но как будет показано дальше, в некоторых случаях при построении эпюр, параболы можно вычерчивать всего лишь по двум точкам. Рассчитаем их значения:

Осталось найти внутренние усилия на III силовом участке (AB).

Рассекаем балку между точками A и B. Выбираем менее нагруженную левую часть. 0 ≤ z3 ≤ 2м – интервал возможных положений сечения относительно левой границы участка.

Записываем выражения для Q и M и вычисляем значения в крайних точках

Здесь видно что выражение для QyIII — линейное, а на эпюре Mx на данном участке будет парабола.

По полученным данным строим эпюры.

Построение эпюр

Для построения эпюр рассчитанные значения откладываем от базовой линии на соответствующих участках.

Начинаем с эпюры поперечных сил Q.

На первом участке выражение для Q не зависело от z1 поэтому его значение будет постоянным (QyI=const) по длине участка, т.е. линия эпюры будет параллельна базовой.

На втором участке были получены два значения Q: -58,3 кН при z2=0 и -18,3кН при z2=1м. Переменная z2 откладывалась от правой границы участка, поэтому z2=0 в точке C, соответственно в т. B переменная z2=1м.

Аналогично откладываются значения Q на третьем участке и значения M на эпюре изгибающих моментов.

Точки на II и III участках эпюры Q и на I участке эпюры M соединяются отрезками, так как распределение внутренних сил и моментов там линейное (переменная z в первой степени).

А при соединении точек эпюры M параболами, надо смотреть на эпюру Q.

Дело в том, что эпюра поперечных сил это первая производная эпюры изгибающих моментов. Поэтому в сечениях балки, где Q=0 на эпюре M будет экстремум.

Как видно эпюра Q пересекает нулевую линию только на третьем силовом участке балки. Поэтому, ввиду того что нас интересуют только пиковые значения изгибающих моментов, на втором участке две крайние точки достаточно соединить параболой, не имеющей экстремума, выпуклость которой направлена навстречу распределенной нагрузке.

Для более точного построения линии параболы на данном участке можно найти значения момента для промежуточных положений сечения, например при z2=0,5м.

На третьем участке, в сечении, где Q пересекает базовую линию необходимо рассчитать точку экстремума.

Для этого выражение для QyIII приравнивается к нулю и рассчитывается значение z3, при котором изгибающий момент на участке принимает экстремальное значение. Его подставляют в выражение для MxIII

Это значение откладывается на эпюре M под точкой пересечения эпюры Q с базовой линией

после чего три точки соединяются плавной линией.

Эпюры внутренних поперечных сил и изгибающих моментов построены.

isopromat.ru

Техническая механика

Сопротивление материалов

Построение эпюр в сопромате

Прикладное значение науки сопротивление материалов заключается в возможности определения основных критериев работоспособности деталей машин и различных конструкций – прочности, деформации и устойчивости.
Применяя метод сечений в сочетании с приемами статики и других разделов прикладной механики, можно определить напряжения, возникающие в том или ином сечении бруса (детали, элемента конструкции), и, исходя из анализа полученного результата, сделать выводы о работоспособности этого бруса при приложении к нему расчетных нагрузок.
Именно напряжение является основным фактором, влияющим на прочностные характеристики элемента конструкции, а также его способность противостоять деформации. По этой причине в сопромате главной задачей, чаще всего, является определение напряжений, возникающих в том или ином сечении детали или элемента конструкции.

Для удобства анализа напряженности отдельных участков и сечений конструкции (бруса) используют графическое изображение нагрузок и напряжений в каждом сечении. Это позволяет визуально анализировать распределение нагрузок и напряжений по всей длине бруса, определять при этом наиболее нагруженные (критические) участки и сечения. Такие графические изображения нагрузок, напряжений, а также деформаций элементов конструкций называют эпюрами.

При анализе степени напряженности и деформирования элемента конструкции (детали, бруса) наиболее часто производят построение следующих типов эпюр:

  • эпюры внутренних сил (продольных или поперечных), действующих в сечениях бруса;
  • эпюры вращающих (крутящих) моментов;
  • эпюры изгибающих моментов;
  • эпюры напряжений (нормальных или касательных);
  • эпюры перемещений (удлинений, укорочений, прогибов и т. п.).
  • Иногда на одной эпюре показываются несколько внутренних силовых факторов (эпюра продольных и поперечных сил, эпюра изгибающего и вращающего моментов), но такие эпюры при сложных нагрузках и переменных сечениях бруса сложны для чтения.

    Как упоминалось выше, наиболее важную информацию о прочностных характеристиках элемента конструкции (бруса), т. е. способности противостоять разрушению, можно получить, используя эпюры напряжений, а информацию о степени деформации под действием расчетной нагрузки – по эпюрам перемещений.
    Эпюры внутренних усилий и моментов в большинстве случаев не дают полной информации о степени напряженности и деформирования отдельных сечений и участков бруса, а являются промежуточным звеном при построении эпюр напряжений и перемещений, особенно если брус имеет ступенчатую форму или переменное поперечное сечение по длине.

    Правила построения эпюр

    При построении эпюр придерживаются определенных стандартных правил, позволяющих одинаково читать, истолковывать и анализировать эпюру всем участникам процесса конструирования изделия.

    Построение эпюры начинают с изображения нулевой линии, которая символизирует линию бруса в ненапряженном состоянии. При этом, если брус имеет сложную пространственную форму, нулевая линия эпюры повторяет контуры центральной (осевой) линии бруса, и имеет такую же пространственную форму.

    Нулевую линию эпюры обозначают названием и нулевым символом. Слева от нулевой линии указывается название эпюры (эпюра сил, моментов, напряжений и т. п.), справа от нулевой линии ставится цифра « 0 ». При указании называния эпюры обычно используют символ изображаемой нагрузки, например, внутренние продольные силы чаще всего обозначаются буквой « N », поперечные – буквой « Q », эпюры изгибающих моментов – буквами « Mиз », эпюры вращающих моментов – буквами « Т » или « Mкр », эпюры напряжений – буквами « σ » или « τ » и т. п. Рядом с буквенным названием эпюры (или под ним) указывается единица измерения (ньютон, мегапаскаль, мм и т. п.).

    Следующий этап построения эпюры – определение границ силовых участков бруса, т. е. таких участков, где внутренний силовой фактор в сечениях или деформация бруса изменяются по одной закономерности (или остаются постоянными). Как правило, границами силовых участков являются сечения, где приложена внешняя нагрузка или (и) площадь поперечного сечения бруса изменяется. В некоторых случаях, при построении эпюр брусьев сложной объемной формы, границы участков определяют аналитически. Границы силовых участков обозначаются тонкими вертикальными линиями, проведенными от изображения бруса через все эпюры.

    Для оптимальной наглядности графика эпюры важно правильно выбрать масштаб изображаемого силового фактора, напряжения или деформации. Если масштаб окажется слишком мелким – эпюра будет трудна для чтения и анализа, если слишком крупным – она займет много места на чертеже.
    Если учесть, что для одного бруса выполняют, как правило, несколько эпюр, расположенных одна под другой, то крупный масштаб не позволит выполнить построение эпюр на одном листе.
    Для правильного выбора масштаба эпюры предварительно следует просчитать значение отображаемого фактора по всем контрольным сечениям бруса, и после этого определиться с масштабом.
    Если, например, в результате расчетов окажется, что вся эпюра займет положительную область (над нулевой линией), то при построении графика эпюры это следует учесть.

    Положительные значения фактора откладываются вверх от нулевой линии, отрицательные – вниз. Если на каком-либо участке силовой фактор равен нулю, эпюра совпадает с нулевой линией по всей длине этого участка. После построение внешнего контура эпюры на контрольных сечениях проставляются значения фактора (обычно на внешних углах эпюры), при этом знак фактора (плюс или минус) не указываются.
    На положительной области (в самой широкой части) ставится знак «+» в кружке, а на отрицательной области – знак «» в кружке (см. примеры построения эпюр). Иногда знаки «+» и «» на эпюре указываются сверху и снизу цифры « 0 » (справа нулевой линии), тогда на площади графика эпюры эти знаки (в кружках) не ставятся.

    По окончании построения эпюры по ее площади проводят тонкие вертикальные линии через равные промежутки. Эти линии символизируют сечения бруса. Иногда, в случае построения сложной пространственной эпюры, линии выполняют не вертикально, а в соответствии с проекционным направлением участка на графике эпюры.

    Определение знака фактора на эпюре

    При построении эпюр внутренних силовых факторов или деформаций необходимо правильно определять знак фактора на данном силовом участке бруса. Для этого следует пользоваться следующими общепринятыми правилами:

    • сжимающая продольная нагрузка считается отрицательной, растягивающая – положительной;
    • поперечная сила Q , направленная вниз считается отрицательной, вверх – положительной;
    • вращающий (крутящий) момент считается положительным, если он вращает «отсеченную» часть бруса против часовой стрелки, отрицательным – по часовой;
    • эпюра изгибающих моментов строится в соответствии с «правилом дождя». Это правило используется следующим образом: если в результате деформации от изгибающего момента исследуемое сечение прогнулось вниз, значит, эпюра имеет положительное значение (образовалась «воронка», в которой может задерживаться «дождевая вода»); если же балка прогнулась вверх, то эпюра имеет отрицательное значение («вода» будет скатываться с балки). Более подробно о знаках эпюр поперечных сил и изгибающих моментов здесь.
    • Особенности построения эпюр поперечных сил и изгибающих моментов

      Для облегчения построения эпюр и контроля правильности графика следует запомнить ряд правил, вытекающих из теоремы Журавского:

      На участке, где равномерно распределенная нагрузка q отсутствует, эпюра поперечных сил Q представляет собой прямую линию, параллельную нулевой линии (оси бруса), а эпюра изгибающих моментов Mиз – наклонную прямую.

      В сечении, где приложена сосредоточенная сила, на эпюре Q должен быть ступенчатый скачок на величину этой силы, а на эпюре Mиз – излом (изменение направления графика).

      На участке действия равномерно распределенной нагрузки q эпюра Q представляет собой наклонную прямую, а эпюра Mиз – параболу, обращенную выпуклостью навстречу стрелкам, изображающим направление распределенной нагрузки.

      Если эпюра Q на наклонном участке в каком-либо сечении пересекает нулевую линию эпюры, то в этом сечении на эпюре изгибающих моментов Mиз будет иметь экстремальное значение (минимальное или максимальное).

      Если на границе действия распределенной нагрузки нет сосредоточенных сил, то наклонный участок эпюры Q соединяется с горизонтальным без «ступеньки», а параболический участок эпюры Mиз соединяется с наклонным участком плавно, без излома.

      В сечениях, где к брусу приложены сосредоченные пары сил, на эпюре Mиз будут иметь место ступенчатые скачки на величину действующих внешних моментов, а эпюра Q изменения не претерпевает (приложенные к брусу изгибающие моменты не влияют на эпюру поперечных сил).

      Примеры построения эпюр

      Материалы раздела «Сопротивление материалов»:

      k-a-t.ru

      Методика построения эпюр изгибающих моментов, поперечных и продольных сил

      1. Виды опорных закреплений

      С технической точки зрения опорные закрепления конструкций весьма разнообразны. При решении задач сопромата, все многообразие существующих опорных устройств схематизируется в виде ряда основных типов опор, из которых

      наиболее часто встречаются: шарнирно-подвижнаяопора (возможные обозначения для нее представлены на рис.1,а), шарнирно-неподвижная опора (рис.1,б) и жесткое защемление, или заделка (рис.1,в).

      В шарнирно-подвижной опоре возникает одна опорная реакция, перпендикулярная опорной плоскости. Такая опора лишает опорное сечение одной степени свободы, то есть препятствует смещению в направлении опорной плоскости, но допускает перемещение в перпендикулярном направлении и поворот опорного сечения.
      В шарнирно-неподвижной опоре возникают вертикальная и горизонтальная реакции. Здесь невозможны перемещения по направлениям опорных стержней, но допускается поворот опорного сечения.
      В жесткой заделке возникают вертикальная и горизонтальная реакции и опорный (реактивный) момент. При этом опорное сечение не может смещаться и поворачиваться.При расчете систем, содержащих жесткую заделку, возникающие опорные реакции можно не определять, выбирая при этом отсеченную часть так, чтобы заделка с неизвестными реакциями в нее не попадала. При расчете систем на шарнирных опорах реакции опор должны быть определены обязательно. Уравнения статики, используемые для этого, зависят от вида системы (балка, рама и др.) и будут приведены в соответствующих разделах настоящего пособия.

      2. Построение эпюр продольных сил N z

      Продольная сила в сечении численно равна алгебраической сумме проекций всех сил, приложенных по одну сторону от рассматриваемого сечения, на продольную ось стержня.

      Правило знаков для Nz: условимся считать продольную силу в сечении положительной, если внешняя нагрузка, приложенная к рассматриваемой отсеченной части стержня, вызывает растяжение и отрицательной — в противном случае.

      Пример 1.Построить эпюру продольных сил для жестко защемленной балки (рис.2).

      1. Намечаем характерные сечения, нумеруя их от свободного конца стержня к заделке.
      2. Определяем продольную силу Nz в каждом характерном сечении. При этом рассматриваем всегда ту отсеченную часть, в которую не попадает жесткая заделка.

      По найденным значениям строим эпюру Nz. Положительные значения откладываются (в выбранном масштабе) над осью эпюры, отрицательные — под осью.

      3. Построение эпюр крутящих моментов М кр .

      Крутящий момент в сечении численно равен алгебраической сумме внешних моментов, приложенных по одну сторону от рассматриваемого сечения, относительно продольной оси Z.

      Правило знаков для Мкр: условимся считать крутящий момент в сечении положительным, если при взгляде на сечение со стороны рассматриваемой отсеченной части внешний момент виден направленным против движения часовой стрелки и отрицательным — в противном случае.

      Пример 2.Построить эпюру крутящих моментов для жестко защемленного стержня (рис.3,а).

      Следует отметить, что алгоритм и принципы построения эпюры крутящих моментов полностью совпадают с алгоритмом и принципами построения эпюры продольных сил.

      1.Намечаем характерные сечения.
      2.Определяем крутящий момент в каждом характерном сечении.

      По найденным значениям строимэпюру Мкр (рис.3,б).

      4. Правила контроля эпюр N z и М кр .

      Для эпюр продольных сил и крутящих моментов характерны определенные закономерности, знание которых позволяет оценить правильность выполненных построений.

      1. Эпюры Nz и Мкр всегда прямолинейные.

      2. На участке, где нет распределенной нагрузки, эпюра Nz(Мкр) — прямая, параллельная оси, а на участке под распределенной нагрузкой — наклонная прямая.

      3. Под точкой приложения сосредоточенной силы на эпюре Nz обязательно должен быть скачок на величину этой силы, аналогично под точкой приложения сосредоточенного момента на эпюре Мкр будет скачок на величину этого момента.

      5. Построение эпюр поперечных сил Q y и изгибающих моментов M x в балках

      Стержень, работающий на изгиб, называется балкой. В сечениях балок, загруженных вертикальными нагрузками, возникают, как правило, два внутренних силовых фактора — поперечная сила Qy и изгибающий момент Mx .

      Поперечная сила в сечении численно равна алгебраической сумме проекций внешних сил, приложенных по одну сторону от рассматриваемого сечения, на поперечную (вертикальную) ось.

      Правило знаков для Qy: условимся считать поперечную силу в сечении положительной, если внешняя нагрузка, приложенная к рассматриваемой отсеченной части, стремится повернуть данное сечение по часовой стрелке и отрицательной — в противном случае.

      Схематически это правило знаков можно представить в виде

      Изгибающий момент Mx в сечении численно равен алгебраической сумме моментов внешних сил, приложенных по одну сторону от рассматриваемого сечения, относительно оси x , проходящей через данное сечение.

      Правило знаков для Mx: условимся считать изгибающий момент в сечении положительным, если внешняя нагрузка, приложенная к рассматриваемой отсеченной части, приводит к растяжению в данном сечении нижних волокон балки и отрицательной — в противном случае.

      Схематически это правило знаков можно представить в виде:

      Следует отметить, что при использовании правила знаков для Mx в указанном виде, эпюра Mx всегда оказывается построенной со стороны сжатых волокон балки.

      6. Консольные балки

      При построении эпюр Qy и Mx в консольных, или жестко защемленных, балках нет необходимости (как и в рассмотренных ранее примерах) вычислять опорные реакции, возникающие в жесткой заделке, но выбирать отсеченную часть нужно так, чтобы заделка в нее не попадала.

      Пример 3.Построить эпюры Qy и Mx (рис.4).

      1. Намечаем характерные сечения.

      2. Определяем поперечную силу Qy в каждом характерном сечении.

      По вычисленным значениям строим эпюру Qy.

      3. Определяем изгибающий момент Mx в каждом характерном сечении.

      По вычисленным значениям строим эпюру Mx, причем, на участке под распределенной нагрузкой эпюра будет криволинейной (квадратная парабола). Выпуклость кривой на этом участке всегда обращена навстречу распределенной нагрузке.

      7. Балки на двух опорах

      В отличие от консольных балок, при расчете балок на двух шарнирных опорах необходимо сначала определить опорные реакции из уравнений статики, так как и в левую, и в правую отсеченные части для любого сечения, расположенного между опорами, попадает соответствующая реакция.

      Для плоской системы число уравнений статики в общем случае равно трем. Если балка загружена только вертикальными нагрузками, то горизонтальная реакция шарнирно-неподвижной опоры равна нулю, и одно из уравнений равновесия обращается в тождество. Таким образом, для определения реакций в опорах шарнирной балки используются два уравнения статики:

      Пример 4. Построить эпюры Qy, Mx для балки с шарнирным опиранием (рис.5).

      1. Вычисляем реакции опор.

      2. Намечаем характерные сечения.

      В отличие от консольных балок здесь известны обе опорные реакции, поэтому для любого сечения можно рассматривать как левую, так и правую отсеченную часть.

      3. Определяем поперечные силы в характерных сечениях.

      Строим эпюру Qy.

      4. Определяем изгибающие моменты в характерных сечениях.

      Строим эпюру Mx.

      8. Правила контроля эпюр Q у и M x

      Дифференциальные зависимости между q, Qy, Mx определяют ряд закономерностей, которым подчиняются эпюры Qy и Mx.

      Эпюра Qy является прямолинейной на всех участках; эпюра Mx — криволинейная (квадратная парабола) на участке под равномерно распределенной нагрузкой, причем, выпуклость кривой всегда обращена навстречу нагрузке q, и прямолинейная на всех остальных участках.

      Под точкой приложения сосредоточенной силы (реакции) на эпюре Qy обязательно должен быть скачок на величину этой силы (реакции). Аналогично, под точкой приложения сосредоточенного момента на эпюре Mx обязателен скачок на величину момента.

      Если на участке под распределенной нагрузкой эпюра Qy пересекает ось (Qy=0), то эпюра Mx в этом сечении имеет экстремум.

      На участках с поперечной силой одного знака эпюра Mx имеет одинаковую монотонность. Так, при Qy>0 эпюра Mx возрастает слева направо; при Qy

      funnystudy.ru

      Это интересно:

      • 145 закон Законодательная база Российской Федерации Бесплатная консультация Федеральное законодательство Главная ФЕДЕРАЛЬНЫЙ ЗАКОН от 18.11.97 N 145-ФЗ "О ВНЕСЕНИИ ДОПОЛНЕНИЯ В ЗАКОН РОССИЙСКОЙ ФЕДЕРАЦИИ "О ПЛАТЕ ЗА ЗЕМЛЮ" Документ в электронном виде ФАПСИ, НТЦ "Система" […]
      • Препарат пку приказ Приказом Минздрава России утверждён перечень лекарственных средств для медицинского применения, подлежащих предметно-количественному учету Материал опубликован 11 августа 2014 в 18:27. Обновлён 13 августа 2014 в 12:27. Новый перечень опубликован и вступит в действие 16 […]
      • Ооо фортуна налог Организация ООО "ФОРТУНА" Адрес: Г РОСТОВ-НА-ДОНУ,УЛ БЕРЕГОВАЯ, 10 Юридический адрес: 344037, РОСТОВСКАЯ ОБЛ, РОСТОВ-НА-ДОНУ Г, 20-Я ЛИНИЯ УЛ, 22 ОКФС: 16 - Частная собственность ОКОГУ: 4210014 - Организации, учрежденные юридическими лицами или гражданами, или […]
      • Правим шейные позвонки Шейные позвонки Шейные позвонки, vertebrae cervicales, (рис. 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20) числом 7, за исключением первых двух, характеризуются небольшими низкими телами, постепенно расширяющимися по направлению к последнему VII, позвонку. Верхняя […]
      • Приказ минздрава россии от 22 апреля 2014 183н Приказ Министерства здравоохранения РФ от 22 апреля 2014 г. N 183н "Об утверждении перечня лекарственных средств для медицинского применения, подлежащих предметно-количественному учету" (с изменениями и дополнениями) Приказ Министерства здравоохранения РФ от 22 апреля 2014 […]
      • Графическое разрешение 640 480 Графическое разрешение 640 480 Урок " Определение объема графического файла" Задача 2. Какой объем информации занимает черно-белое изображение размером 600 х 800? Решение: 600 х 800 = 480 000 точек 480 000 точек х 1 бит = 480 000 бит 480 000 бит / 8 бит / 1024 байт ≈ 58, […]
      • Федеральные правила 128 Приказ Минтранса РФ от 31 июля 2009 г. N 128 "Об утверждении Федеральных авиационных правил "Подготовка и выполнение полетов в гражданской авиации Российской Федерации" (с изменениями и дополнениями) Приказ Минтранса РФ от 31 июля 2009 г. N 128"Об утверждении Федеральных […]
      • Правила чтения английский pdf Правила чтения английских слов для ленивых. Васильева Е.А. Цель пособия — познакомить с правилами чтения односложных, двусложных и многосложных слов английского языка, что в дальнейшем поможет выработать и закрепить навыки быстрого правильного чтения слов данных групп […]