Величин по закону пуассона

| | 0 Comment

Распределение и формула Пуассона

В данной статье мы рассмотрим ещё одно дискретное распределение, которое получило широкое распространение на практике. Не успел я открыть курс по теории вероятностей, как сразу стали поступать запросы: «Где Пуассон? Где задачи на формулу Пуассона?» и т.п. И поэтому я начну с частного применения распределения Пуассона – ввиду большой востребованности материала.

Задача до боли эйфории знакома:

– проводится независимых испытаний, в каждом из которых случайное событие может появиться с вероятностью. Требуется найти вероятность того, что в данной серии испытаний событие появится ровно раз.

Наверное, вам уже снится формула Бернулли🙂

тем более, на уроке о биномиальном распределении вероятностей мы разобрали ситуацию по косточкам.

В том случае, если количество испытаний велико (сотни и тысячи), эту вероятность обычно рассчитывают приближённо – с помощью локальной теоремы Лапласа: , где .

Однако и тут есть «слабое звено» – теорема Лапласа начинает серьёзно барахлить (давать большую погрешность), если вероятность меньше, чем 0,1 (и чем меньше, тем всё хуже). Поэтому здесь используют другой метод, и именно распределение Пуассона.

Итак, если количество испытаний достаточно велико, а вероятность появления события в отдельно взятом испытании весьма мала (0,05-0,1 и меньше), то вероятность того, что в данной серии испытаний событие появится ровно раз, можно приближенно вычислить по формуле Пуассона:
, где

Напоминаю, что ноль факториал , а значит, формула имеет смысл и для .

Вместо «лямбды» также используют букву «а».

В новом микрорайоне поставлено 10000 кодовых замков на входных дверях домов. Вероятность выхода из строя одного замка в течение месяца равна 0,0002. Найти вероятность того, что за месяц откажет ровно 1 замок.

Утопичная, конечно, задача, но что делать – решаем🙂

В данном случае количество «испытаний» велико, а вероятность «успеха» в каждом из них – мала: , поэтому используем формулу Пуассона:

Вычислим:
– по существу, это среднеожидаемое количество вышедших из строя замков.

Таким образом:
– вероятность того, что за месяц из строя выйдет ровно один замок (из 10 тысяч).

Ответ:

С технической точки зрения этот результат можно получить несколькими способами, расскажу о них в историческом ракурсе:

1) С помощью специальной таблицы, которая до сих пор встречается во многих книгах по терверу. В данную таблицу сведены различные значения и соответствующие им вероятности. Табулирование обусловлено тем, что в своё время не существовало бытовых калькуляторов, на которых можно было бы подсчитать значения экспоненциальной функции. Отсюда, кстати, идёт традиция округлять вычисления до 4 знаков после запятой – как в стандартной таблице.

2) С помощью прямого вычисления на микрокалькуляторе (прогресс!).

3) С помощью стандартной экселевской функции:
=ПУАССОН(m; лямбда; 0)
в данной задаче вбиваем в любую ячейку Экселя =ПУАССОН(1; 2; 0) и жмём Enter.

Следует отметить, что развитие вычислительной техники фактически отправило в историю методы Лапласа, да и рассматриваемый метод тоже – по той причине, что ответ легко вычислить более точно по формуле Бернулли:

Здесь я использовал функцию БИНОМРАСП, о которой неоднократно упоминал ранее.

Но формула Пуассона, тем не менее, даёт очень крутое приближение:
– с погрешностью только на 9 знаке после запятой!

Впрочем, это всё лирика, решать-то всё равно нужно по формуле Пуассона:

Завод отправил в торговую сеть 500 изделий. Вероятность повреждения изделия в пути равна 0,003. Найти вероятность того, что при транспортировке будет повреждено: а) ни одного изделия, б) ровно три изделия, в) более трех изделий.

Решение: используем формулу Пуассона:

В данном случае:
– среднеожидаемое количество повреждённых изделий

а)
– вероятность того, что все изделия дойдут в целости и сохранности. Ничего не украдут, одним словом 🙂

б)
– вероятность того, что в пути будут повреждены ровно 3 изделия из 500.

в)
А тут всё немножко хитрее. Сначала найдём – вероятность того, что в пути повредятся не более трёх изделий. По теореме сложения вероятностей несовместных событий:

Само собой, ручками это считать надоест, и поэтому я добавил в свой расчётный макет автоматическое построение распределения Пуассона (см. Пункт 7) – пользуйтесь на здоровье.

По теореме сложения вероятностей противоположных событий:
– вероятность того, что при доставке будет повреждено более 3 изделий.

Ответ: а) , б) , в)

Вероятность изготовления бракованных деталей при их массовом производ­стве равна . Определить вероятность того, что в партии из 800 деталей будет: а) ровно 2 бракованные, б) не более двух.

Иногда условие встречается в несколько другой интерпретации. Так, в предложенной задаче может идти речь о том, что производственный брак составляет 0,1% или, например, «в среднем 0,8 детали на каждую тысячу». Обратите внимание, что в последнем случае нам дано готовое значение «лямбда».

В этой связи ни в коем случае не отключаем голову – даже в таких простых примерах!

А теперь о самом распределении Пуассона. Случайная величина , распределённая по этому закону, принимает бесконечное и счётное количество значений , вероятности появления которых определяются формулой:

Или, если расписать подробно:

Вспоминая разложение экспоненты в ряд, легко убедиться, что:

В теории установлено, что математическое ожидание пуассоновской случайной величины равно и дисперсия – тому же самому значению: .

Обратите внимание, что во всех вышеприведённых заданиях мы лишь ПОЛЬЗОВАЛИСЬ распределением Пуассона для приближенного расчёта вероятностей, в то время как ТОЧНЫЕ значения следовало находить по формуле Бернулли, т.е., там имело место биномиальное распределение.

И следующие две задачи принципиально отличаются от предыдущих:

Случайная величина подчинена закону Пуассона с математическим ожиданием . Найти вероятность того, что данная случайная величина примет значение, меньшее, чем ее математическое ожидание.

Отличие состоит в том, что здесь речь идёт ИМЕННО о распределении Пуассона.

Решение: случайная величина принимает значения с вероятностями:

По условию, , и тут всё просто: событие состоит в трёх несовместных исходах:

вероятность того, что случайная величина примет значение, меньшее, чем ее математическое ожидание.

Ответ:

Аналогичная задача на понимание:

Случайная величина подчинена закону Пуассона с математическим ожиданием . Найти вероятность того, что данная случайная величина примет положительное значение.

Помимо приближения биномиального распределения (Примеры 1-3), распределение Пуассона нашло широкое применение в теории массового обслуживания для вероятностной характеристики простейшего потока событий. Постараюсь быть лаконичным:

Пусть в некоторую систему поступают заявки (телефонные звонки, приходящие клиенты и т.д.). Поток заявок называют простейшим, если он удовлетворяет условиям стационарности, отсутствия последствий и ординарности. Стационарность подразумевает то, что интенсивность заявок постоянна и не зависит от времени суток, дня недели или других временнЫх рамок. Иными словами, не бывает «часа пик» и не бывает «мёртвых часов». Отсутствие последствий означает, что вероятность появления новых заявок не зависит от «предыстории», т.е. нет такого, что «одна бабка рассказала» и другие «набежали» (или наоборот, разбежались). И, наконец, свойство ординарности характеризуется тем, что за достаточно малый промежуток времени практически невозможно появление двух или бОльшего количества заявок. «Две старушки в двери?» – нет уж, увольте.

Итак, пусть в некоторую систему поступает простейший поток заявок со средней интенсивностью заявок в минуту (в час, в день или в произвольный промежуток времени). Тогда вероятность того, что за данный промежуток времени, в систему поступит ровно заявок, равна:

Звонки в диспетчерскую такси представляет собой простейший пуассоновский поток со средней интенсивностью 30 вызовов в час. Найти вероятность того, что: а) за 1 мин. поступит 2-3 вызова, б) в течение пяти минут будет хотя бы один звонок.

Решение: используем формулу Пуассона:

а) Учитывая стационарность потока, вычислим среднее количество вызовов за 1 минуту:
вызова – в среднем за одну минуту.

По теореме сложения вероятностей несовместных событий:
– вероятность того, что за 1 минуту в диспетчерскую поступит 2-3 вызова.

б) Вычислим среднее количество вызов за пять минут:

По формуле Пуассона:
– вероятность того, что в течение 5 минут не будет ни одного звонка.

По теореме сложения вероятностей противоположных событий:
– вероятность того, что в течение 5 минут будет хотя бы один вызов.

Ответ: а) , б)

Заметьте, что, несмотря на конечное количество возможных звонков (а оно в принципе конечно), здесь имеет место именно распределение Пуассона, а не какое-то другое.

Для самостоятельного решения:

Среднее число автомобилей, проходящих таможенный досмотр в течение часа, равно 3. Найти вероятность того, что: а) за 2 часа пройдут досмотр от 7 до 10 автомобилей; б) за пол часа успеет пройти досмотр только 1 автомобиль.

Решение и ответ в конце урока.

Наверное, многие знают, что теория массового обслуживания – это обширный и очень интересный раздел прикладной математики, и сейчас мы познакомились с простейшей его задачей.

Дополнительные примеры на распределение и формулу Пуассона можно найти в тематической pdf-книге, и я предлагаю вам ознакомиться с ещё одной популярной вещью – Гипергеометрическим распределением вероятностей.

Приятного и полезного чтения!

Решения и ответы:

Пример 3. Решение: используем формулу Пуассона:
, в данном случае:

а) – вероятность того, что в данной партии окажется ровно 2 бракованные детали.
б) По теореме сложения вероятностей несовместных событий:

– вероятность того, что в данной партии окажется не более 2 бракованных изделий.

Ответ: а) , б)

Пример 5. Решение: случайная величина принимает значения с вероятностями . По условию, .
Найдём вероятность того, что случайная величина примет нулевое значение:

По теореме сложения вероятностей противоположных событий:
– вероятность того, что случайная величина примет положительное значение

Ответ:

Пример 7. Решение: предполагая поток простым, используем формулу Пуассона:

а) Вычислим – среднее количество автомобилей, проходящих таможенный досмотр, в течение 2 часов.
По теореме сложения вероятностей несовместных событий:

– вероятность того, что за 2 часа досмотр пройдут от 7 до 10 автомобилей

б) Вычислим – среднее количество автомобилей, проходящих досмотр, за 1/2 часа.
По формуле Пуассона:
– вероятность того, что за пол часа таможенный досмотр пройдёт только один автомобиль.

Ответ: а) , б)

Автор: Емелин Александр

(Переход на главную страницу)

Качественные работы без плагиата – Zaochnik.com

mathprofi.ru

Величин по закону пуассона

Даны две случайные величины Хн Y. Величина X распределена по биномиальному закону с параметрами п = 19, р = 0,1 величина У распределена по закону Пуассона с параметром А.=2. [c.49]

Закон Пуассона. При р 10 + 11 несимметричность распределения практически не ощущается и закон Пуассона можно заменять нормальным законом распределения с определенными допущениями. [c.27]

Существует важное соотношение между пуассоновским и экспоненциальным распределениями. Если случайная величина подчинена закону Пуассона и представляет собой число отказов в единицу времени, то случайная величина, которая определяет промежуток времени между двумя последовательными отказами, распределена по экспоненциальному закону. Экспоненциальное распределение можно в сущности вывести из распределения Пуассона. [c.33]

В пуассоновском потоке событий (стационарном и нестационарном) число событий потока, попадающих на любой участок, распределено по закону Пуассона [c.54]

Так как число выпущенных автомобилей ДО на любой фиксированный момент t распределено по закону Пуассона с параметром [c.61]

Пример 3.2. Специализированный пост диагностики представляет собой одноканальную СМО. Число стоянок для автомобилей, ожидающих проведения диагностики, ограничено и равно 3 [(N — 1) = 3]. Если все стоянки заняты, т. е. в очереди уже находится три автомобиля, то очередной автомобиль, прибывший на диагностику, в очередь на обслуживание не становится. Поток автомобилей, прибывающих на диагностику, распределен по закону Пуассона и имеет интенсивность А, 0,85 (автомобиля в час). Время диагностики автомобиля распределено по показательному закону и в среднем равно 1,05 час. [c.92]

Для построения прогнозов ожидаемых значений объемов финансовых ресурсов депозитной природы, аккумулируемых на основе средств значительного числа вкладчиков (однотипных счетов), могут быть использованы стохастические модели банковских депозитов. В их основе лежат гипотезы о возможности описания процессов, ведущих к изменению количества счетов, и числа операций с ними с помощью случайных величин, распределенных по закону Пуассона, а коэффициентов относительного изменения счетов в ходе отдельной операции — с помощью случайных величин, имеющих логарифмически нормальное распределение. [c.201]

Дискретная случайная величина X называется распределенной по закону Пуассона, если ее возможные значения 0, 1,2. т,. . а вероятность события Х=т выражается формулой [c.152]

Распределение Пуассона зависит от одного параметра а. Для случайной величины распределенной по закону Пуассона M[X]=D[X]=a, где М — математическое ожидание, D — дисперсия случайной величины X. [c.152]

Приведем здесь еще два важных резу штата, для случайной величины, распределенной по закону Пуассона (11 6), математическое ожидание и дисперсия равны параметру К данного распределения [c.202]

Теорема 5.1.. В простейшем потоке с интенсивностью Я случайное число событий Х(т), наступающих за проме-ж ток времени т, распределено по закону Пуассона [c.73]

Случайная величина Х(т) распределена по закону Пуассона. [c.86]

Случайная величина X(t г) распределена по закону Пуассона (6.1), зависящему от интенсивности потока A(t), от момента tu и длины г временного промежутка [c.102]

Для этого должно совместно произойти два независимых события. Одно из них состоит в том, что на участок длиной t попадут точно k— 1 событий исходного простейшего потока. Вероятность этого события согласно закону Пуассона (5.1) равна [c.109]

При заметной удаленности ремонтного органа следует учитывать дополнительное снижение объема ЗИПа за время Т доставки агрегата в ремонт и обратно. При простейшем потоке заявок это распределение для фиксированного Т подчинено закону Пуассона [c.283]

Пусть параметр распределения Пуассона а>1 и [а]=1. Рассмотрим случайную величину ,, распределенную по закону Пуассона с параметром а. Известно, что pi — максимальна, при [c.35]

Распределение вероятности возникновения на газопроводах как внезапных, так и постепенных отказов весьма близко к распределению по закону Пуассона (табл. VIII-4). Распределение Пуассона характерно для многих процессов, в которых значение признака образуется числом повторений некоторого явления в течение известного периода. Условие его образования состоит в возможности повторения «этого явления через короткие промежутки времени, причем вероятность его не зависит от того, давно ли оно имело место в последний раз и сколько раз оно имело место. [c.199]

Перед тем, как вернуться к данным, мы должны спросить себя о том, что можно ожидать на основе гипотезы случайных блужданий. Если ценовые изменения независимы, положительные (+) и отрицательные (-) шаги следуют друг за другом подобно «орлам» и «решкам» рыночного броска монеты. Для симметричных распределений ценовых изменений, начинающихся с плюса, +, вероятность получить минус, -, равна 1/2. Вероятность получить два минуса в ряду -1/2×1/2=1/4 вероятность получить три минуса в ряду — 1/2 х 1/2 х 1/2 = 1/8, и так далее. Для каждого дополнительного отрицательного приращения мы видим, что вероятность делится надвое. Это определяет так называемое экспоненциальное распределение, описывающее тот фаю1, что увеличение длительности просадки на одну единицу времени делает ее вдвойне менее вероятной. Этот показательный закон также известен, как закон Пуассона и описывает процессы, не имеющие [c.67]

economy-ru.info

Это интересно:

  • Власть выше закона в россии Что же делать конкретно? 89 27.08.2017 13:51 7.9 (78) АКАДЕМИЯ УПРАВЛЕНИЯ РАЗВИТИЕМ – ИНСТИТУТ НЕБОПОЛИТИКИ Навигация для корабля, который не знает куда плыть На вопрос хорошо осведомленных лиц: «Что же России надо делать конкретно на пике мирового кризиса «пределов […]
  • Закон о изменении границ участка Уточнение местоположения границ и (или) площади земельного участка Уточнение местоположения границ и (или) площади земельного участка - комплекс работ и процедур, направленных на установление и юридическое закрепление границ земельного участка с определением координат […]
  • Деление дроби на целое число правило Деление дробных чисел § 150. Определение. Деление есть действие (обратное умножению), состоящее в том, что по данному произведению двух сомножителей (делимому) и одному из этих сомножителей (делителю) отыскивается другой сомножитель (частное). Так как множимое и […]
  • Закон механический работа 1.3. Законы сохранения импульса и энергии Механическая работа где F (Н) – модуль силы, s (м) – модуль перемещения, а – угол между направлением силы и перемещением. Единица измерения работы – джоуль. 1 Дж= 1 Н м. Условия совершения механической работы (отличной от нуля): […]
  • Договор купле продажи котенка Договор купли-продажи племенного животного (для ознакомления - образец!) ДОГОВОР ПРОДАЖИ КОТЕНКА Заводчик Мейн кунов Я _________________ фамилия, имя, отчество покупателя _______________ ____________________ Прожив. по адресу ________________ город, улица, дом, […]
  • Правила по пдд для дошкольников Правила по пдд для дошкольников Только вышел я за двор – И увидел светофор. Загорелся красный свет – Нам вперёд дороги нет. Я стою и жду, когда же Можно мне идти, но даже Жёлтый свет, на удивленье. Не даёт мне разрешенья. Говорит мне: - Стой и жди! На зелёный свет - […]
  • Призначено прокурора Призначено прокурора Носівського району Наказом Генерального прокурора України Олександра Смуригіна призначено прокурором Носівського району Чернігівської області. Молодший радник юстиції Олександр Олександрович Смуригін народився 15 червня 1985 року у місті Чернігові. У […]
  • Законы распределения дискретных случайных величин примеры Случайные величины. Дискретная случайная величина.Математическое ожидание Второй раздел по теории вероятностей посвящён случайным величинам, которые незримо сопровождали нас буквально в каждой статье по теме. И настал момент чётко сформулировать, что же это […]