Закон ома в жидкостях

| | 0 Comment

Закон ома в жидкостях

Ток в жидкостях

Если на две пластины, помещённые в жидкость, подать напряжение (подсоединить их к батарейке), то в жидкости между пластинами возникнет электрическое поле. Однако ток пойдёт лишь в том случае, если в жидкости есть свободные электрические заряды. Такие жидкости называются электролитами . К ним, в частности, относятся растворы солей, кислот. Следует отметить, что наличие свободных зарядов (ионов) — свойство самого раствора, воздействие поля здесь ни при чём. Например, медный купорос CuSO4, растворяясь в воде, диссоциирует (разлагается) на положительно заряженные ионы меди Cu ++ и отрицательно заряженные ионы кислотного остатка SO4 — . В электрическом поле отрицательные ионы ( анионы ) станут двигаться к положительному электроду — аноду , положительные ионы ( катионы ) — к отрицательному электроду — катоду . Через жидкость пойдёт электрический ток. В нашем примере с медным купоросом ионы меди, достигнув катода, нейтрализуются и оседают на нём. Если анод медный, то ионы кислотного остатка, достигнув анода, нейтрализуются и соединяются с атомами меди (отрывая их от анода), превращаясь в медный купорос. В воде последний диссоциирует, образуя ионы. В результате происходит перенос меди с анода на катод; концентрация раствора при этом не меняется.

Поскольку каждый ион несёт и массу, и заряд, а все ионы, двигающиеся в сторону данного электрода, одинаковые, то выделившаяся или осевшая на электроде масса M всегда будет пропорциональна заряду Q, прошедшему через электрод. (Коэффициент пропорциональности k называется электрохимическим эквивалентом вещества.) Это очевидное утверждение известно как закон Фарадея (или закон электролиза):

Электролиз — выделение на электродах составных частей растворённых веществ или других веществ, являющихся результатом вторичных реакций на электродах.

Благодаря тому, что скорость ионов в электрическом поле оказывается пропорциональна напряжённости поля (экспериментальный факт), связь напряжения на электродах и силы тока в электролитах является линейной, то есть в электролитах, как и в твёрдых проводниках, выполняется закон Ома.

koi.tspu.ru

Закон Ома для жидкостей и газов

Дальнейшее развитие физики привело к созданию теории электропроводности жидкостей и газов. В 1851 г. Кольрауш обобщил закон Ома, распространив его на жидкости. Экспериментальные исследования показали, что ток в жидкостях представляет собой направленное движение положительных и отрицательных ионов под действием электрического поля, созданного в жидкости.

Проводимость жидкостей и газов обусловлена количеством зарядов, проходящих через перпендикулярное полю поперечное сечение объема, в котором находится жидкость или газ. Кроме того, количество перенесенного электричества зависит от скорости перемещения заряженных частиц. Кольрауш показал, что закон Ома в дифференциальной форме выполняется и для жидкостей, причем удельная проводимость для жидкостей

и закон Ома имеет вид:

где q — заряд иона; n — число ионов, проходящих через единицу площади поперечного сечения за 1 с; и — скорости положительных и отрицательных ионов.

Для газов в указанном виде закон Ома выполняется только при условии несамостоятельной проводимости и при малой плотности тока. Дело в том, что при больших значениях напряженности электрического поля скорости ионов будут настолько большими, что возможна вторичная ионизация. Вторичная ионизация приводит к увеличению концентрации носителей заряда, и пропорциональность между плотностью тока и напряженностью нарушается.

vestishki.ru

ЭЛЕКТРИЧЕСКИЙ ТОК В ЖИДКОСТЯХ

Жидкости по степени электропроводности делятся на:
диэлектрики (дистиллированная вода),
проводники (электролиты),
полупроводники (расплавленный селен).

— это проводящая жидкость (растворы кислот , щелочей, солей и расплавленные соли).


Электролитическая диссоциация
(разъединение)

— при растворении в результате теплового движения происходят столкновения молекул растворителя и нейтральных молекул электролита.
Молекулы распадаются на положительные и отрицательные ионы.
Например, растворение медного купороса в воде.

Ион

— атом или молекула, потерявшая или присоединившая к себе один или несколько электронов;
— существуют положительные ( катионы ) и отрицательные ( анионы ) ионы.


Рекомбинация ионов

Наряду с диссоциацией в электролите одновременно может происходить процесс восстановления ионов в нейтральные молекулы.

Между процессами электролитической диссоциации и рекомбинации при неизменных условиях устанавливается динамическое равновесие.


Степень диссоциации

— доля молекул, распавшихся на ионы;
— возрастает с увеличением температуры;
— еще зависит от концентрации раствора и от электрических свойств растворителя.


Электропроводимость электролитов

Ионная проводимость — упорядоченное движение ионов под действием внешнего эл.поля; существует в электролитах; прохождение эл.тока связано с переносом вещества.

Электронная проводимость — также в небольшой мере присутствует в электролитах , но в основном характеризует электропроводимость жидких металлов.
Ионы в электролите движутся хаотически до тех пор, пока в жидкость не опускаются электроды, между которыми существует разность потенциалов. Тогда на хаотическое движение ионов накладывается их упорядоченное движение к соответствующим электродам и в электролите возникает эл. ток.

Зависимость сопротивления электролита от температуры

Температурная зависимость сопротивления электролита объясняется в основном
изменением удельного сопротивления.
,
где альфа — температурный коэффициент сопротивления.
Для электролитов всегда

Поэтому

Сопротивление электролита можно рассчитать по формуле:


Явление электролиза

— сопровождает прохождение эл.тока через жидкость;
— это выделение на электродах веществ, входящих в электролиты;
Положительно заряженные анионы под действием электрического поля стремятся к отрицательному катоду, а отрицательно заряженные катионы — к положительному аноду.
На аноде отрицательные ионы отдают лишние электроны ( окислительная реакция )
На катоде положительные ионы получают недостающие электроны ( восстановительная реакция ).


Закон электролиза

Закон электролиза определяет массу вещества, выделяемого на электроде при электролизе за время прохождения эл.тока .

k — электрохимический эквивалент вещества, численно равный массе вещества, выделившегося на электроде при прохождении через электролит заряда в 1 Кл.
Зная массу выделившегося вещества, можно определить заряд электрона.


Применение электролиза

получение чистых металлов (очистка от примесей);
гальваностегия, т.е. получение покрытий на металле ( никелирование, хромирование и т.д. );
гальванопластика, т.е. получение отслаиваемых покрытий ( рельефных копий).

Другие страницы по теме «Электричество» за 10-11 класс:

class-fizika.narod.ru

III. Основы электродинамики

Тестирование онлайн

Электрический ток в жидкостях

Как известно, химически чистая (дистиллированная) вода является плохим проводником. Однако при растворении в воде различных веществ (кислот, щелочей, солей и др.) раствор становится проводником, из-за распада молекул вещества на ионы. Это явление называется электролитической диссоциацией, а сам раствор электролитом, способным проводить ток.

В отличие от металлов и газов прохождение тока через электролит сопровождается химическими реакциями на электродах, что приводит к выделению на них химических элементов, входящих в состав электролита.

Первый закон Фарадея: масса вещества, выделяющегося на каком-либо из электродов, прямо пропорциональна заряду, прошедшему через электролит

Электрохимический эквивалент вещества — табличная величина.

Второй закон Фарадея:

Протекание тока в жидкостях сопровождается выделением теплоты. При этом выполняется закон Джоуля-Ленца.

Электрический ток в металлах

При прохождении тока металлы нагреваются. В результате чего ионы кристаллической решетки начинают колебаться с большей амплитудой вблизи положений равновесия. В результате этого поток электронов чаще соударяется с кристаллической решеткой, а следовательно возрастает сопротивление их движению. При увеличении температуры растет сопротивление проводника.

Каждое вещество характеризуется собственным температурным коэффициентом сопротивления — табличная величина. Существуют специальные сплавы, сопротивление которых практически не изменяется при нагревании, например манганин и константан.

Явление сверхпроводимости. При температурах близких к абсолютному нулю (-273 0 C) удельное сопротивление проводника скачком падает до нуля. Сверхпроводимость — микроскопический квантовый эффект.

Применение электрического тока в металлах

Лампа накаливания производит свет за счет электрического тока, протекающего по нити накала. Материал нити накала имеет высокую температуру плавления (например, вольфрам), так как она разогревается до температуры 2500 – 3250К. Нить помещена в стеклянную колбу с инертным газом.

Электрический ток в газах

Газы в естественном состоянии не проводят электричества (являются диэлектриками), так как состоят из электрически нейтральных атомов и молекул. Проводником может стать ионизированный газ, содержащий электроны, положительные и отрицательные ионы.

Ионизация может возникать под действием высоких температур, различных излучений (ультрафиолетового, рентгеновского, радиоактивного), космических лучей, столкновения частиц между собой.

Ионизированное состояние газа получило название плазмы. В масштабах Вселенной плазма — наиболее распространенное агрегатное состояние вещества. Из нее состоят Солнце, звезды, верхние слои атмосферы.

Прохождение электрического тока через газ называется газовым разрядом.

В «рекламной» неоновой трубке протекает тлеющий разряд. Светящийся газ представляет собой «живую плазму».

Между электродами сварочного аппарата возникает дуговой разряд.

Дуговой разряд горит в ртутных лампах — очень ярких источниках света.

Искровой разряд наблюдаем в молниях. Здесь напряженность электрического поля достигает пробивного значения. Сила тока около 10 МА!

Для коронного разряда характерно свечение газа, образуя «корону», окружающую электрод. Коронный разряд — основной источник потерь энергии высоковольтных линий электропередачи.

Электрический ток в вакууме

А возможно ли распространение электрического тока в вакууме (от лат. vacuum — пустота)? Поскольку в вакууме нет свободных носителей зарядов, то он является идеальным диэлектриком. Появление ионов привело бы к исчезновению вакуума и получению ионизированного газа. Но вот появление свободных электронов обеспечит протекание тока через вакуум. Как получить в вакууме свободные электроны? С помощью явления термоэлектронной эмиссии — испускания веществом электронов при нагревании.

Вакуумный диод, триод, электронно-лучевая трубка (в старых телевизорах) — приборы, работа которых основана на явлении термоэлектронной эмиссии. Основной принцип действия: наличие тугоплавкого материала, через который протекает ток — катод, холодный электрод, собирающий термоэлектроны — анод.

fizmat.by

Электрический ток в жидкостях — теория, электролиз

То, что жидкости могут отлично проводить электрическую энергию, знают абсолютно все. И также общеизвестным фактом является то, что все проводники по своему типу делятся на несколько подгрупп. Предлагаем рассмотреть в нашей статье, как электрический ток в жидкостях, металлах и прочих полупроводниках проводится, а также законы электролиза и его виды.

Теория электролиза

Чтобы было легче понять, о чем идет речь, предлагаем начать с теории, электричество, если мы рассматриваем электрический заряд, как своего рода жидкость, стало известным уже более 200 лет. Заряды состоят из отдельных электронов, но те, настолько малы, что любой большой заряд ведет себя как непрерывного течения, жидкость.

Как и тела твердого типа, жидкие проводники могут быть трех типов:

  • полупроводниками (селен, сульфиды и прочие);
  • диэлектиками (щелочные растворы, соли и кислоты);
  • проводниками (скажем, в плазме).

Процесс, при котором происходит растворение электролитов и распадение ионов под воздействием электрического молярного поля, называется диссоциация. В свою очередь, доля молекул, которые распались на ионы, либо распавшихся ионов в растворенном веществе, полностью зависит от физических свойств и температуры в различных проводниках и расплавах. Обязательно нужно помнить, что ионы могут рекомбинироваться или вновь объединиться. Если условия не будут меняться, то количество распавшихся ионов и объединившихся будет равно пропорциональным.

В электролитах проводят энергию ионы, т.к. они могут являться и положительно заряженными частицами, и отрицательно. Во время подключения жидкости (или точнее, сосуда с жидкостью к сети питания), начнется движение частиц к противоположным зарядам (положительные ионы начнут притягиваться к катодам, а отрицательные – к анодам). В этом случае, энергию транспортируют непосредственно, ионы, поэтому проводимость такого типа называется – ионной.

Во время этого типа проводимости, ток переносят ионы, и на электродах выделяются вещества, которые являются составляющими электролитов. Если рассуждать с точки зрения химии, то происходит окисление и восстановление. Таким образом, электрический ток в газах и жидкостях транспортируется при помощи электролиза.

Законы физики и ток в жидкостях

Электричество в наших домах и технике, как правило, не передается в металлических проволоках,. В металле электроны могут переходить от атома к атому, и, таким образом нести отрицательный заряд.

Как жидкости, они приводятся в виде электрического напряжения, известного как напряжение, изменяемом в единицах – вольт, в честь итальянского ученого Алессандро Вольта.

Видео: Электрический ток в жидкостях: полная теория

Также, электрический ток течет от высокого напряжения в низкое напряжение и измеряется в единицах, известных как ампер, названных по имени Андре-Мари Ампера. И согласно теории и формулы, если увеличить напряжение тока, то его сила также увеличится пропорционально. Это соотношение известно как закон Ома. Как пример, виртуальная ампермерная характеристика ниже.

Рисунок: зависимость тока от напряжения

Закон Ома (с дополнительными подробностями относительно длины и толщины проволоки), как правило, является одним из первых вещей, преподаваемых в классах, изучающих физику, многие студенты и преподаватели поэтому рассматривают электрический ток в газах и жидкостях как основной закон в физике.

Для того чтобы увидеть своими глазами движение зарядов, нужно приготовить колбу с соленой водой, плоские прямоугольные электроды и источники питания, также понадобится ампермерная установка, при помощи которой будет проводиться энергия от сети питания к электродам.

Рисунок: Ток и соль

Пластины, которые выступают проводниками необходимо опустить в жидкость, и включить напряжение. После этого начнется хаотичное перемещение частиц, но как после возникновения магнитного поля между проводниками, этот процесс упорядочится.

Как только ионы начнут меняться зарядами и объединяться, аноды станут катодами, а катоды – анодами. Но здесь нужно учитывать и электрическое сопротивление. Конечно, не последнюю роль играет теоретическая кривая, но основное влияние – это температура и уровень диссоциации (зависит от того, какие носители будут выбраны), а также выбран переменный ток или постоянный. Завершая это опытное исследование, Вы можете обратить внимание, что на твердых телах (металлических пластинах), образовался тончайший слой соли.

Электролиз и вакуум

Электрический ток в вакууме и жидкостях – это достаточно сложный вопрос. Дело в том, что в таких средах полностью отсутствуют заряды в телах, а значит, это диэлектрик. Иными словами, наша цель – это создание условий, для того, чтобы атом электрона мог начать свое движение.

Для того нужно использовать модульное устройство, проводники и металлические пластины, а далее действовать, как и в методе выше.

Проводники и вакуум Характеристика тока в вакууме

Применение электролиза

Этот процесс применяется практически во всех сферах жизни. Даже самые элементарные работы подчас требуют вмешательства электрического тока в жидкостях, скажем,

При помощи этого простого процесса происходит покрытие твердых тел тончайшим слоем какого-либо металла, например, никелирование иди хромирование Т.е. это один из возможных способов борьбы с коррозийными процессами. Подобные технологии используются в изготовлении трансформаторов, счетчиков и прочих электрических приборов.

Надеемся, наше обоснование ответило на все вопросы, которые возникают, изучая явление электрический ток в жидкостях. Если нужны более качественные ответы, то советуем посетить форум электриков, там Вас с радостью проконсультируют бесплатно.

www.asutpp.ru

Это интересно:

  • Налог на землю новые изменения Налог на землю в 2018 году — обзор изменений кадастровой стоимости В прошлом году в Российской Федерации был подписан закон, который коренным образом поменял порядок расчета налога на землю. Теперь, с 2018 года, налог на такое имущество, как земельные участки и прочая […]
  • Бланк декларации земельного налога Как заполнять и подавать декларацию по земельному налогу? В соответствии с нормами действующего законодательства, организациями и индивидуальными предпринимателями, у которых в собственности находятся земельные участки, должна предоставляться налоговая декларация по […]
  • Закон о нравственном воспитании Нравственное и патриотическое воспитание может стать элементом образовательного процесса Разработаны меры по обеспечению патриотического и нравственного воспитания детей и молодежи. Соответствующий законопроект 1 внесен в Госдуму членом Совета Федерации Сергеем […]
  • Правила выбора шкафа купе Как выбрать шкаф-купе и на что обращать внимание. Предлагаем ознакомиться со списком вопросов, которые возникают наиболее часто при выборе шкафа купе: часто задаваемые вопросы. Наши покупатели имеют возможность оставить вопрос в Книге вопросов и ответов. Тут тоже можно […]
  • Ходатайство об уточнении размера исковых требований Уточнение исковых требований После принятия судом иска и даже в процессу судебного разбирательства истец имеет право заявить уточнение исковых требований. В порядке уточнений можно указать новые обстоятельства или дополнить старые, увеличить или уменьшить сумму иска, […]
  • Какое наказание за нештатный ксенон Штраф за ксеноны в 2018 году На сегодняшний день фары с ксеноном довольно популярны среди водителей. Ксеноновые лампы по своим характеристикам намного лучше, чем простые галогеновые. Во-первых, они намного шире, четче и качественнее освещают дорогу в любую погоду (в ясную, […]
  • Иждивение оформить Как оформить иждивение? Вопросы необходимости оформления иждивения возникают не часто, поскольку большая часть иждивенцев являются таковыми в силу закона, и проблема установления факта иждивения отпадает сама по себе. Вместе с тем, в ряде случаев необходимость оформления […]
  • Форма документов на возврат товара Бланк возврата товара Обновление: 8 января 2018 г. Образец бланка на возврат товара Покупатель имеет возможность отказаться от товара, который он купил, если недоволен покупкой. Такая ситуация может возникнуть, если товар не подходит по размеру, цвету, имеет какие-нибудь […]